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Abstract 

More than 25% of proteins require metal ion cofactors for structure or function. The 

interactions between metalloproteins have largely been overlooked, though these interactions 

ultimately govern metal localization and control metal ion homeostasis. Mammalian 

metallothionein (MT) is a small, cysteine-rich metalloprotein that binds numerous metal ions 

per protein strand. Up to seven divalent metals, such as zinc or cadmium, are wrapped into a 

clustered two-domain structure. This unusually high metal content places MT as an attractive 

candidate for studying interactions with other metal-binding proteins. This study investigates 

the metal transfer reactions between MTs and other metalloproteins, using carbonic 

anhydrase (CA) as a putative zinc-dependent enzyme. 

This thesis presents electrospray ionization mass spectrometric (ESI-MS) data showing the 

competitive zinc metallation reactions between apoCA and various apoMTs. Modelling of 

the ESI-MS data was used to determine the reaction parameters and those parameters are 

shown to be reflected directly in the raw data. These results demonstrate how MT can act as a 

homeostatic buffer of metal ions, by binding them with different affinities. The kinetics of 

the metal transfers between zinc MTs and cadmium or zinc CA show that the rates of metal 

transfer between the two metalloproteins is directly dependent on the metal content of the 

MT. Further studies on the domain specific properties of MT using shortened MT domain 

fragment proteins showed that: (i) there was no significant degree of domain specificity in 

metal binding to apoMTs; (ii) the weakest bound metal ion is located within the N-terminal 

domain of the intact MT protein; (iii) the highest affinity binding site is located within the C-

terminal domain; and, (iv) domain-domain interactions within the MT peptide strand 

modulate metal binding affinities. Taken together, these results support the homeostatic roles 

of metallothionein proteins while also challenging the  current mechanisms for metal binding 

and release to apoenzymes. 

Keywords 

Metal homeostasis, zinc, cadmium, metallothionein, carbonic anhydrase, proteins, 

electrospray ionization mass spectrometry, chemical reaction modeling, chemical kinetics. 
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Chapter 1  

1 Introduction 

Metallothioneins (MTs) are metalloproteins that bind multiple metals and are found in all 

forms of Life. Using the large number of cysteine residues, relative to their small size, 

MTs bind numerous metal ions in vitro and in vivo including, but not limited to: zinc, 

cadmium, copper, nickel, mercury, and arsenic. The ability to accommodate a large and 

varied number of heavy metals is a unique property of this polymorphous family of 

metalloproteins. Determining the metal binding stoichiometries of members of the MT 

family has been a significant focus since MT was first discovered in 1957 by Margoshes 

and Vallee while they were studying cadmium binding proteins in equine kidney. These 

stoichiometries, which have been referred to as the “magic numbers of MT,” depend on 

the metal identity and preferred metal binding geometry, as well as the amino acid 

sequence composition and number of metal binding residues of the MT in question. The 

formation of protein-metal clusters involving bridging and terminal thiols is supported by 

the wrapping of the peptide backbone, which stabilizes and protects the metal clusters. 

The structural properties of the MT, and specifically the metalloclusters, govern the 

available chemistries and therefore, the in vivo activities of these ubiquitous proteins. 

1.1 Zinc in biology 

Many metals are essential for all life and play important roles in cellular development, 

cell signaling, and proper cellular function.1, 2 The most common metal ion cofactor is 

zinc, where approximately 10% of all genes encoding for proteins contain at least one 

zinc binding site (determined from meta-analysis of the sequenced human genome).3 

Examples of zinc binding proteins are shown, along with an expanded view of the zinc 

coordinating ligands, in Figure 1.1. These zinc-binding proteins include zinc-dependent 

enzymes, zinc finger proteins, and other zinc-responsive elements such as cytokines and 

growth and transcription factors. 

Owing to its involvement in numerous critical roles, zinc deficiency is common.4 An 

estimated 15-25% of the world’s population is considered zinc deficient5 and the 2008 
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Copenhagen Consensus ranked supplying zinc and vitamin A to the over 100 million 

significantly malnourished children as the highest priority for cost-effective improvement 

of overall global well-being.6, 7 Depending on the severity of deficiency, numerous health 

complications can arise including: impaired immune function, growth retardation, 

sensory dysfunction, infertility, and neuronal, motor, and psychological disorders.5, 8-13 

Zinc also plays roles in aging14 and has been implicated in numerous diseases including 

cancer,15-17 diabetes,18-20 and neurodegenerative21-23 and cardiovascular diseases.24-26 

Understanding the physiochemical relationships between this metal and its biological 

targets is an active area of interest worldwide.27-31 

 

Figure 1.1: Zinc-binding sites in proteins for structural or catalytic roles. (A) Zinc-

substituted rubredoxin (1IRN32), structural. (B) tRNA-guanine transglycosylase 

(1PUD33), structural. (C) Zinc finger domain of Xenopus protein Xfin (1ZNF34), 

structural. (D) Human carbonic anhydrase (2CBA35), catalytic. (E) Enolase (4ENL36), 

catalytic. The zinc binding ligands are shown below the protein structure. 

Zinc enzymes catalyze many physiologically important reactions.37 Carbonic anhydrase, 

for example, uses its active site containing one zinc ion to activate a coordinated water 

molecule in order to carry out hydration of CO2, forming bicarbonate in muscle tissues.38 

The bicarbonate is later converted back to exhalable CO2 in the lungs, forging the basis of 

respiration. Carboxypeptidase uses zinc-activated water to catalyze protein degradation.39 

The zinc-enzyme alcohol dehydrogenase catalyzes the interconversion of alcohols and 

aldehydes, which are important metabolites.40, 41 Instead of participating directly in 

catalytic reaction, other proteins use one or more zinc ions for structural roles. 
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Zinc fingers are domains of DNA-binding proteins commonly found in DNA 

transcription factors, whose folded structure is held together through the coordination of 

zinc ions. In these structural motifs, combinations of Cys and His residues bind to the 

zinc ion tetrahedrally resulting in a fold that resembles an outstretched finger.34 DNA 

sequence specificity of zinc-fingers is accomplished through matching of favourable 

electrostatic and polar contacts between the DNA bases and surface exposed protein 

amino acid side chains that interact in the major groove of the DNA double helix.42  

1.2 Zinc homeostasis, toxic metals, and MT 

Despite the ubiquity of zinc in biological systems, free zinc concentrations are tightly 

regulated within a narrow range using a complex series of metal-specific sensors, 

importers, exporters, chaperones, and storage sites.43-46 Normally, these systems work 

together to maintain an acceptable homeostatic level of the metal within an optimal range 

by controlling the flux of metal import and export as well as delivery to metal storage 

sites and metal-dependent processes such as metal-dependent enzymes.47 The 

intracellular levels of free zinc, for example, have been estimated to be as low as 

picomolar48, 49 or even femtomolar concentrations.44 When this careful balance of metal 

concentration is disrupted, there is potential for numerous health complications, 

depending on the severity of the imbalance. 

It has been suggested that MT plays key roles in the metal ion homeostasis of the 

essential metals copper and zinc and interacts with many metalloproteins.50 Not only can 

MT act as a metal chaperone, delivering zinc to apo-zinc-dependent enzymes, but more 

recent results have shown that the multiple zinc binding affinities permit the zinc sensing 

and buffering capabilities discussed above.51-53 There are numerous reports that Zn7-MT 

is able to transfer its zinc to zinc-dependent apoenzymes, such as sorbitol 

dehydrogenase,54 mitochondrial aconitase,55 alkaline phosphatase,56 and carbonic 

anhydrase.57-60 Zn7-MT has also been shown to donate zinc to and remove zinc from the 

zinc finger domains of the transcription factors: Gal4,61 p53,62, 63 NF-κB,64 Sp1,65 

TFIIIA, 66, 67 and TTK.68 Owing to the high metal binding affinities involved in both the 

donor MT and acceptor enzymes and the fast rates of these metal transfers, these metal 

delivery reactions are proposed to occur through direct protein-protein interactions 
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between the apoenzymes and Zn7-MT.60 Further evidence in support of MT’s 

metallochaperone function is the induction of MTs when cells are exposed to metals.69-72 

These studies, coupled with the prevalence of MT in all cell types, have been used to 

support the proposed homeostatic roles as functions of Zn-MTs. However, there are few 

detailed mechanistic studies regarding these metal transfers, which are governed by the 

relative metal affinities between donor and acceptor.  

Studies of MT knockout mice fed zinc-deficient diets showed delayed and abnormal 

growth patterns due to the lack of a buffered supply of zinc from Zn-MTs.73 The MT 

knockout mice also showed a greater sensitivity to the toxic effects of increased zinc 

levels74 due to the lack of an inducible zinc-responsive metal binding element (apoMT). 

Taken together, these results show how MT protects against harmful effects of both zinc 

deficiency and zinc excess by acting as a reservoir of available zinc in times of deficiency 

and as a sink for excess zinc during excess. 

The other most commonly proposed function of MT is the detoxification of toxic metals 

such as cadmium,75 and, potentially, arsenic,76 lead,77 and mercury.78, 79 The large number 

of soft cysteinyl sulfur ligands allows MT to coordinate to soft toxic metals, in most cases 

with binding affinities greater than the less toxic zinc.80 This higher affinity for more 

toxic metals permits metal exchange with Zn-MTs, leading to the release of free zinc, 

which, as described above, induces production of apoMT. This feedback process ensures 

a rapid response to toxic metal sequestration and also that the homeostatic levels of zinc 

are quickly restored.  

A major benefit of sequestration of toxic metals by MT is that binding to the of MT 

prevents the toxic metals from potentially interfering with more critical metal binding 

processes, for which the binding affinities are lower than in MT. Highlighting these roles, 

it was reported that MT knockout mice were hypersensitive to cadmium, despite the fact 

that they accumulated only a small amount of cadmium compared to normal mice at the 

same exposure levels.81-83 The MT null mice were not protected from the toxic effects 

due to the lack of a safe site for cadmium sequestration. Wild-type mice treated with 

increasing doses of cadmium also developed higher tolerances to cadmium toxicity, due 
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to the higher levels of induced MT protein.84 These results are especially significant as 

chronic cadmium exposure for humans is relatively common in the workplace, from 

foods grown in cadmium-rich soil or fertilized with phosphate sources containing 

cadmium, and significantly, from inhaled cigarette smoke.85, 86 Cadmium is retained by 

the body and excreted very slowly with an estimated time in the human body on the order 

of decades,87 where it is accumulated primarily in the kidneys as Cd-MT,88 eventually 

leading to serious kidney damage and the disruption of proper kidney function. 

1.3 Structural properties of metallothioneins 

In humans, there are four known MT isoforms: MT1, MT2, MT3, and MT4.89, 90 The 

MT1 and MT2 isoforms are constitutively expressed in all cells at low levels, with 

enhanced expression in the kidneys, liver, pancreas, and intestines. MT3 and MT4 are 

expressed only in specialized tissues of the brain and skin, respectively.91 Sequence 

substitutions between the isoforms, as well as a small sequence insertion for MT3, 

generate very subtle differences in metal binding properties.92 In fact, the properties of 

MT1 and MT2 have long been regarded as synonymous despite the differences in the 

amino acid sequence. Invariably, in all mammalian MTs, the cysteines are perfectly 

conserved in repeating Cys-Cys, Cys-X-Cys, and Cys-X-X-Cys motifs.93 The large 

number of cysteine residues (20) relative to the total size of 60-70 residues permits the 

flexible coordination of different stoichiometric ratios and identities of metal ions. This 

facile flexibility in accommodating different metal coordination geometries is a 

fundamental property of MTs and allows for homeostatic control through the buffering of 

essential metals, acting as a metal donor to metalloenzymes when saturated and a metal 

acceptor from lower affinity zinc sites when unsaturated.  

Mammalian MTs bind up to seven zinc or cadmium ions in tetrahedral geometries in two 

distinct domains, as shown in Figure 1.2. The N-terminal β-domain binds three divalent 

metals coordinated with nine cysteines and the C-terminal α domain binds four divalent 

metals with 11 cysteines. The single X-ray structure of an intact two-domain mammalian 

MT shows that, in the solid state, the two-domains form a dumbbell-like structure where 

the domains are separated by a short, flexible linker region.94, 95   
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Figure 1.2: The two-domain structure of Zn/Cd saturated mammalian MT. 

(4MT296) M3S9 β-domain on the left and the M4S11 α domain on the right. (A) Space-

filling model. (B) Dumbbell-like organization of the two-domains connected by the short 

peptide interdomain linker. (C) Bonding structure within each of the metal clusters. The 

protein backbone is shown as a light gray ribbon, the metals are shown as dark gray 

spheres, and the sulfur atoms as yellow spheres. 
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The binding modes of the metals (M), that is the interaction of the metals with the thiols 

(S), are different in each domain. The β-domain M3S9 cluster is comprised of a six 

membered ring of alternating M and bridging S, the remaining six S are terminally 

bound, two per metal. The addition of one extra metal ion and two sulfur ligands in the α 

domain forms an M4S11 adamantane-like cluster. Compared to the β-cluster, the 

additional metal in the α-cluster bridges two of the terminal sulfurs, resulting in a total of 

5 bridging and 6 terminal S. The difference in the ligand to metal ratio, 3 and 2.75 for the 

β- and α-clusters, respectively, has been suggested to play important roles in domain-

specific properties, such as metal binding cooperativity, metal transfer reactions, and 

domain interactions,97 as it could be argued that the decreased ligand number decreases 

the overall affinity (KF) for the 3 metals in the β-domain cluster.  

To date, very few MT protein structures have been solved considering the ubiquitous 

nature of MT proteins.98 Owing to their small size and high fluxtionality, MT proteins are 

difficult to crystallize. Solving the NMR solution structures of partially metallated MTs 

has also been hindered by this flexibility. In fact, the only structures that are currently 

available are of the metal-saturated forms with zinc and cadmium; significantly, there are 

no experimentally determined structures available of partially metallated MTs.  

In the absence of metals, the apoMT peptide strand has been predicted from molecular 

dynamics (MD) calculations,99 and supported experimentally,100 to exist as a globular 

random coil, with no well-defined secondary structural elements. The “folding” of the 

MT protein into the two-domain structure is metal-induced, where reorganization of the 

peptide strand backbone and side-chains results from the formation of metal-binding sites 

to accommodate the metals, greatly reducing fluxtionality.101, 102 The lack of motion of 

coordinating cysteinyl thiols has been reported from MD calculations.103  

In forming metal-saturated MT from apoMT, the protein passes through distinct 

intermediate metallation states as shown in Scheme 1.1. The first added divalent metal 

binds to four of the exposed thiols, where the lability of the metal and flexibility of the 

peptide drives the reorganization to the most thermodynamically preferred occupancy 

(i.e., the most stable four from a pool of 20 available cysteines for (MII)1-MT). 
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Scheme 1.1: Sequential metallation reactions of MT. 

The second metal to bind can occur via two pathways: (i) the metal binds to four free 

thiols in a beaded fashion with no bridging interactions to the first MIIS4 site, or (ii) the 

metal shares a single bridging S with the MIIS4 already present, forming an (MII)2S7 

cluster. The third and fourth divalent metals have similar binding pathway options: (i) the 

beaded pathway, with three or four beaded (MII)S4 independent binding sites (leaving 8 

and 4 free thiols, respectively), or (ii) the clustered pathway, forming a three metal 

(M II)3S9 or four metal (MII)4S11 cluster (leaving 11 or 9 free thiols). This trend continues 

for the rest of the metallation steps, as shown in Figure 1.3, where the beaded pathway 

maximizes the number of terminal thiols (minimizing the number of bridging) and the 

cluster pathway maximizes the number of bridging thiols (by minimizing the number of 

terminal). Both pathways converge in the formation the metal saturated (MII)7-MT where 

all the thiols are required to support the seven divalent metals. 

Interestingly, the three and four metal clusters are the most efficient (lowest ligand to 

metal ratios), geometrically favoured combinations for tetrahedral metal ligand binding 

and are also the same cluster motifs found in the β- and α domains, respectively. There is 

experimental evidence in support of both pathways, as will be discussed in more detail in 

Section 1.4. Adoption of the specific metal binding pathway leads to determination of the 

metal binding mechanism: cooperative or non-cooperative metal binding.  
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Figure 1.3: Possible structures of metal thiolate bonding formed for each of the two 

metallation pathways in MT for two to six metals bound. (A-E) Clustered products, 

where the number of geometrically favoured bridging thiols is maximized. (F-J) Beaded 

products, where the number of terminal thiols is maximized. 
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1.4 Techniques for studying MTs 

The properties of MTs have been studied using numerous experimental techniques. The 

most commonly used of these include: ultraviolet (UV) absorption spectroscopy, circular 

dichroism (CD) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), 

nuclear magnetic resonance spectroscopy (1H and 111/113Cd NMR), and X-ray absorption 

spectroscopies. This section will provide a brief overview of each of the techniques used 

in this thesis: UV and CD spectroscopies and ESI-MS. The information that can be 

determined from these techniques (as used for the data discussed throughout the thesis), 

as well as their respective limitations will also be described. 

1.4.1 Ultraviolet absorption and circular dichroism spectroscopy 

As discussed in Section 1.3, the absence of aromatic amino acids and lack of well-defined 

secondary structural elements (α-helices or β-sheets) severely limits the available 

spectroscopic signatures that can be used to study MTs. Perhaps the most useful 

absorptions are the ligand-to-metal charge transfer (LMCT) absorption bands between the 

thiolate sulfur and coordinated metal. The wavelength of the LMCT is metal-dependent, 

as it arises from the electronic transitions of Sn � Mπ*; therefore, the energy gap 

depends on the orbital energy of, predominantly, the π* of the metal.104 UV and CD 

spectroscopic data measured in the LMCT region(s) of the MT-metal complexes are 

excellent probes with which to determine the geometries and stoichiometries of metal 

binding as well some information on the metal binding affinities.  

The wavelengths of the LMCT bands of d10 metals bound to MT are longer than 225 nm. 

These transitions are especially useful in studying MTs because, for most metals, these 

transitions are completely clear and resolved from the amide n – π* absorptions of the 

protein backbone (~220 nm). The absence of aromatic amino acids clears the absorption 

spectrum region that is common in most other proteins (250-290 nm). Therefore, for 

apoMTs, the region of the UV spectrum λ > 225 nm is devoid of any significant spectral 

features, as shown in the spectra of apoMT shown in Figure 1.4 (black line). Metal 

binding to the protein can be followed by measuring the change in the LMCT band 

intensity as a function of added metal. The LMCT band of zinc occurs at approximately 
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225 nm and for cadmium it is approximately centered on 250 nm, Figure 1.4 red and 

green lines, respectively. Since each metal possesses a different LMCT absorption 

maximum, it is possible to also measure the change in the relative intensity of these two 

LMCT bands as a function of added metals to monitor metal exchange reactions. These 

metal competition reactions, where MT loaded with one metal is challenged by addition 

of another metal, can be used to estimate the relative order of binding affinities of each 

metal for MT. 

 

Figure 1.4: Sample UV absorption spectra of MTs. The LMCT band of zinc appears as 

a shoulder near 230nm on the protein backbone 220 nm absorption and the cadmium 

LMCT band as a shoulder centred at 250 nm. Lines: apo-βαMT1A (black), Zn7-βαMT1A 

(red), and Cd7-βαMT1A (green). Conditions: ~10 µM protein in 10 mM Tris buffer pH 

7.4 measured at room temperature on a Varian Cary 50. 

Circular dichroism (CD) spectroscopy has also been widely applied to the study of MTs. 

CD spectra measure the difference in the absorption of left-handed and right-handed 

circularly polarized light of optically active molecules. All proteins possess CD spectral 

signals in the UV region as all amino acids are chiral at the alpha carbon (excluding 

glycine) – these signals are sensitive to conformational changes. Organization of the 

chiral centres into repeating segments of secondary structure in the protein generates 

spectral signatures representative of α-helices, β-sheets, and random coils in the far UV 

region (190-220 nm).  
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Figure 1.5: Example circular dichroism spectra of a cadmium titration of 15 µM 

apo-αMT1A.  The first two equivalents of added cadmium build peaks at 255 nm and 220 

nm. These bands are the result of the formation of beaded (CdS4)
2- structures. The 

derivative signal (260 nm peak, 240 nm trough) forms when clustering begins as required 

to support more than two bound Cd2+. Data originally measured by Rigby-Duncan, 

K.E.105 and replotted with permission. 

The far UV peptide region of the CD spectra of metal-free apoMTs is monophasic and 

strongly negative at wavelengths < 220 nm, a result of the random coil nature of the 

peptide. Metal binding to MT results in folding of the MT peptide around the metal(s) 

into specific chiral structures. The LMCT UV absorption bands of MT are strongly 

dichroic due to the peptide-induced asymmetry of the metal binding sites and CD signals 

at λ > 220 nm are exclusively from metal binding to the protein. Many detailed 

spectroscopic analyses have been carried out on the metallation reactions of MT with 

numerous metals. Cd-binding to MT, for example, generates a strong derivative signal 

between 240-260 nm.106-108 The origin of this derivative CD signal is a result of the 

asymmetric overlap of the dipole moments of the bridging thiolate ligands in the cluster, 

known as exciton splitting or coupling. The shape and intensity of the cadmium CD band 

is dependent on the stoichiometry of bound metals and the structure of the binding 

site(s).109 Addition of cadmium to apoMT (Figure 1.5) has been interpreted as being due 

to the cadmium bound as separate (CdS4)
2- beads before coalescing into the clustered 

structure.110 
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The major drawback to using many spectroscopic techniques to determine metal binding 

properties of MTs is that only the aggregate average signals are detected. In fact, based 

mostly on information from these techniques, the binding of metals to MTs was long 

considered to be homogeneous. This meant that for a single addition of metal ions, that 

exact number was bound in solution. The UV and CD spectra were therefore considered 

to directly report on the MT solution speciation. However, results from ESI-MS 

experiments showed that binding of metals, at least to some MTs, resulted in significant 

heterogeneity in solution speciation.111 Thus, spectroscopic techniques lack the sensitivity 

required to resolve multiple speciation, such as the presence of various metallation states 

of MT, even though there are subtle differences in the clustered and beaded UV and CD 

spectra. 

1.4.2 Electrospray ionization mass spectrometry 

ESI-MS measures the mass to charge ratio (m/z) of ionized gas-phase analytes, providing 

both qualitative and quantitative information about the species in solution. ESI-MS has 

been used in numerous studies of MT metal binding. ESI-MS is especially well suited to 

the study of the metallation properties of MTs as it permits identification of the metals 

bound and their stoichiometries. Since ESI-MS is a key technique used for all work in 

this thesis, this section provides a more detailed description of the instrumentation and 

the advantages of its application to studying MTs. 

A schematic diagram of a typical ESI mass spectrometer is shown in Figure 1.6A. All 

mass spectrometers contain: a sample inlet ionization source (a), ion optics (b), a mass 

analyzer and an ion detector (c), a data analyzer (d), and a vacuum pump system (e).112 

The ionization source converts analyte molecules into gas-phase ions. These ions are 

directed into the mass spectrometer and collected and focused with the ion optics. The 

collected ions are separated based on their m/z ratios by the mass analyzer. Finally, they 

are detected by the ion detector and counted and displayed by the data analyzer. The 

vacuum system is necessary for the ions to be analyzed without interference, due to 

collisions with atmospheric gases.  
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Figure 1.6: The electrospray ionization mass spectrometer. (A) Schematic of an 

electrospray ionization time-of-flight mass spectrometer (ESI-TOF-MS): (a) ESI ion 

source, (b) ion optics, (c) TOF mass analyzer and ion detector, (d) data analysis system, 

and (e) vacuum pump system. (B) Simplified illustration of the charged residue model for 

the production of gas-phase molecular ions in the electrospray process. 

Several ionization methods are used in mass spectrometry. These can be separated into 

two categories: hard and soft ionization methods. Hard ionization sources, such as 

electron impact, result in significant fragmentation of analyte molecules and are not 

suited to the study of large biomolecules. Soft ionization sources, such as ESI and matrix-

assisted laser desorption / ionization (MALDI), do not significantly fragment analyte 

molecules during the ionization process. Soft ionization methods are well-suited to the 

study of proteins due to their ability to detect mass changes from the parent protein 

species as a result of post-translational modifications, associated cofactors, and complex 
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formation.113 For example, the predictable and detectable mass changes in the mass 

spectra of protein-metal complexes can reveal the stoichiometry of the resulting complex.  

Figure 1.6A shows a schematic of a typical ESI ion source commonly used in mass 

spectrometers. The sample solution containing the dissolved analyte is infused through a 

metal capillary charged to several thousand volts. A fine mist of charged droplets exits 

the capillary and the electrostatic field results in the formation of a Taylor cone. 

Evaporation of the solvent from the charged droplets decreases the droplet size while the 

charge remains the same, increasing the charge density. Fission of the droplet occurs 

when the charge density of the droplet surpasses the Rayleigh limit, when the repulsive 

Columbic forces become greater than the surface tension. Evaporative-fission events 

continue until very small droplets are produced. Production of the charged gas-phase 

analytes are thought to occur through different mechanisms depending on the analytes.  

In the Charge Residue Model, the droplets continue to evaporate to dryness, leaving 

charged gas-phase analytes adducted with the remaining ions (Figure 1.6B).114 A 

distribution of charges per analyte molecule are possible, depending on the size of the 

analyte molecule, solution composition, and electrospray conditions, resulting in the 

formation of multiple “charge states,” usually from different numbers of adducted 

protons, forming [M + nH]n+ species.115 The charge state distribution of a protein can 

therefore provide conformational information, as unfolding of the protein increases the 

volume and exposes a greater number of protonatable basic sites, both of which increase 

the average and maximum supported charge. Charged analytes are separated by the mass 

analyzer, detected by the ion detector, and displayed by the data analyzer.  

The ESI-MS technique has many advantages for the study of MTs, including: (i) small 

volumes (25 µL per measurement) of dilute (< 50 µM) samples, (ii) direct solution phase 

sample injection, (iii) the ability to monitor reactions in real time, (iv) identification of 

individual and multiple speciation from the unique m/z ratios, and (v) 

conformational/folding information from the charge state distributions. The soft 

ionization of ESI does not fragment or otherwise disrupt the metal binding sites, 

therefore, it is possible to quantitatively determine the stoichiometry of the metallation 
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reaction for each metal with MT(s), in solution.116 Quantitative analysis assumes that 

each species ionizes in a similar fashion, which is not true for all species. However, in 

1993, Feneslau et al. showed that the concentrations of each of the Mn-MT species can be 

reliably estimated from the mass spectral data.117 

The most significant disadvantage in ESI is the potential for ions other than protons to 

adduct in the electrospray process. Sodium and potassium, for example, also form 

adducts with proteins in the ESI process. Therefore, special care has to be taken to avoid 

contamination and salts containing these ions, including common buffers used in 

physiological studies.                                      

1.4.3 Competition experiments 

Competition experiment techniques can be used for studying the multiple metal binding 

affinities of MTs. In a competition experiment, two species compete for a common 

substrate (S) under equilibrium conditions: 

    B   +   S   ⇌   BS 

]][[
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BS
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    C   +   S   ⇌   CS 
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This set of two competing reactions is described by the combination of their individual 

equilibrium reactions, eq 1 and eq 2. By having the species compete at equal 

concentration, the terms from the binding affinity equations become simplified. For 

example, the distribution of a substrate S after addition to an equimolar mixture of apoB 

and apoC will follow the most thermodynamically preferred occupancy, with the 

substrate preferentially occupying the higher affinity site. Thus, the ratio of the affinity 
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constants between apoA and apoB is reflected in the substrate occupancy (or vice versa), 

as shown in eq 3.
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Figure 1.7 shows how the substrate occupancy distribution between two competing 

species changes as a function of equilibrium constants. These curves are based on 

computational simulations of eq 3 and show the competitive formation of BS and CS 

from an equimolar mixture of B and C. Figure 1.7 show five different scenarios for the 

equilibrium constant (K) ratios: (A) when the equilibrium constants favour CS formation 

by 0.5 log units [log(KB) = log(KC) – 0.5], (B) when neither BS nor CS are favoured 

(identical equilibrium constants), and where the formation of BS is favoured over CS by 

(C) 0.5, (D) 1.0, and (E) 1.5 log units. 

In a simplistic model, it might be assumed that the reaction with the largest K receives all 

or the majority of the reaction flux. However, when coupled reversible reactions are in 

equilibrium, how large (or small) of a difference in K between competing reactions is 

significant? The curves in Figure 1.7 permit visualization of the abstract competition 

reactions between two competing ligands with different binding affinities. Panel 3D, for 

example, shows that when competing species differ in K by one order of magnitude, there 

is significant preference for the preferred reaction (formation of BS); however, formation 

of the non-dominant product (CS) is also, significantly, non-zero.  

In these one-to-one competition models, it is possible to determine the approximate ratio 

of the equilibrium constants from the speciation data.118 For example, by measuring and 

plotting the competitive formation of substrate S binding to B and C, it is possible to 

determine the relative ratios of the equilibrium constants that describe the reactions 

forming BS and CS. If, in a separate experiment, the equilibrium constant of B or C is 

determined (or known) then that value and the ratios from the competition experiments 

can be used to assign a K-value for the unknown reaction.  
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Figure 1.7: Speciation models of the competitive reactions between equal 

concentrations of B and C for substrate S. The curves show the competitive formation 

of the substrate bound species BS (black squares) and CS (red circles) as a function of 

added S. 



www.manaraa.com

19 

 

In the ESI-MS experiments used in this thesis, equal concentrations of MTs compete 

against each other or against the zinc-dependent enzyme carbonic anhydrase (CA) for 

added zinc or cadmium.  The competitive formation of the metal-bound products was 

then measured and plotted as a function of added metal. This provides the relative K 

ratios of the reactions that govern the formation of those products. Addition of the known 

zinc binding constant (KF) of CA from published experiments allows for the 

determination of the real KF of zinc binding to MT. In this way, the MT binding affinities 

are locked onto the known value of CA. 

1.5 Cooperativity and non-cooperativity of metal 
binding to MTs 

The concept of metal binding cooperativity to MTs is significantly different from the 

traditional biochemical view of cooperativity, such as the binding of oxygen to the four 

domains of hemoglobin. Due to the lack of preformed binding sites, metal-induced 

folding of the protein strand, and numerous possible intermediate structures, the simple 

model of traditional biochemical cooperativity becomes much more complex when 

discussing the cooperativity of MT metal binding. However, the overall thermodynamic 

driving force remains the same. A multistep process is cooperative when the successive 

reactions become more thermodynamically favourable rather than less favourable, as 

expected theoretically.119 In the case of oxygen binding to tetrameric hemoglobin, for 

example, binding of one molecule of oxygen in one of the four domains triggers a 

conformational change in the other three domains that increases their oxygen binding 

affinities and promotes the formation of fully oxygenated (O2)4-hemoglobin.120 Thus, 

only deoxy- and fully oxygenated hemoglobin states are predominant, resulting in a fully 

cooperative mechanism.  

In the cooperative mechanism of the reactions shown in Scheme 1.1, the successive K 

values increase, that is Ki+1 > Ki, promoting the formation of the fully metal saturated 

product. In this mechanism, the only species that are present in solution at equilibrium are 

the fully metallated end point of the reaction, which is formed from any amount of added 

metal, and the fully unsaturated apoMT. Since the reaction equilibrium constants increase 

for cooperative systems, the intermediate metallation states are thermodynamically 
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unfavoured and formation of saturated MT is promoted over partial metallation states. 

For example, if zinc binding to mammalian MT was fully cooperative, addition of 3 

equiv of Zn to a solution of apoMT would result in the formation of ~3/7 Zn7MT leaving 

~4/7 apoMT with little to no intermediate metallation states.  

The biophysical rationale for cooperativity in MTs is justified by the preferential 

clustering (over beading) of metals formed from metal templated folding and formation 

of transiently empty metal binding sites. Thus, reorganization of the apopeptide upon 

binding of one zinc ion preforms subsequent zinc binding sites, likely near the first 

binding site, promoting clustering. These reactions – metal binding leading to formation 

of a new metal binding site – cascade, one after another, which drives the reaction to 

completion and forming the fully metal-saturated MTs. 

In contrast, in a non-cooperative process, the successive K values decrease such that Ki+1 

< Ki, following the theoretically expected trend. This means that, for example, for the set 

of successive reactions shown in Scheme 1.1, the reactions become less favoured with 

each additional metallation step. In this mechanism, all of the intermediate metallation 

states are formed statistically and the distribution of Znn-MT species will depend on the 

mole equivalents of zinc added. For example, if zinc binding to MT was fully non-

cooperative, addition of 3 equiv of Zn to a solution of apoMT would result in formation 

of an approximately normal distribution of Zn1-5-MT, where the average zinc load would 

equal Zn3-MT. The actual speciation distribution that would be centered on Zn3-MT 

would depend on the ratios of the K values for the reactions describing the formation of 

Zn3-MT from Zn2-MT and the reaction of Zn3-MT forming Zn4-MT. 

The structural implications of non-cooperativity in the metallation reactions of MTs 

result in the preferential formation of (MIIS4)
2- beads over clusters. As each metal is 

added, there is no significant change to subsequent metallation reactions, with the 

exception that there are four fewer free thiols available to form the next beaded binding 

site. Thus, in a non-cooperative pathway, subsequent reactions become less favoured 

largely due to there being less open coordination sites. In fact, as was shown for arsenic 

metallation of MTs121 (noting that arsenic binds in a  trigonal pyramidal geometry, 



www.manaraa.com

21 

 

forming (AsIIIS3)-beads and does not form clusters), the decrease in reaction rate 

constants was approximately linear with remaining open metal binding sites.122, 123 A 

further corollary of non-cooperative binding is that cluster formation involving bridging 

thiols occurs only for the 6th and 7th divalent metals bound (Figure 1.3). 

1.5.1 Experimental evidence of metal binding cooperativity in MTs 

Numerous studies have suggested that zinc and cadmium bind to MTs in a cooperative 

fashion,111 though more recent results from ESI-MS experiments, specifically on MT1116, 

124 and MT3,125 have suggested the operation of a non-cooperative metal binding 

mechanism. There has been considerable debate on whether the binding of zinc and 

cadmium to mammalian MT was cooperative or non-cooperative. Results from CD, UV, 

NMR, and other experimental techniques have suggested that cadmium and zinc binding 

to MTs was cooperative and domain-specific. Analysis of optical spectral data led to the 

conclusion that the first four metals bound cooperatively to apoMT and were located 

specifically in the α domain.126 For the intact 20 cysteine protein, this implies that only 

the apo [(SH)9β-(SH)11α-MT] and (MII)4 [(SH)9β-(MII)4S11-αMT] species would be stable 

for up to four equivalents of divalent metals added. However, these experimental 

techniques provide the average metallation state of the solution species and are unable to 

resolve multiple metallation states. Recently, ESI-MS techniques have been applied to 

the study of metallation reactions of MT. As described above, ESI-MS is able to identify 

the stoichiometry of bound metals, including multiple metallation states, in addition to 

structural and other quantitative and qualitative information, demonstrating the power of 

this technique for studying the multiple metal binding events in MTs. 

1.6 Domain specificity   

MT domain properties have been well studied, yet the question remains: why did the two-

domain structure seen in most MTs evolve? Surely, this feature is intricately tied to the 

exact in vivo functions of MT proteins, especially considering the prevalence of the MT 

protein family and their high sequence conservation. The metal binding site organization 

in MTs is unique compared to other metalloproteins and chaperones. The spatial 

separation of the two metal clusters is an interesting arrangement that shares properties 
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with both metal storage proteins and metal chaperone proteins, a fact that has likely 

contributed to the debate over the exact in vivo functions of MT proteins that has been 

ongoing for more than five decades.   

A common feature in nearly all MTs throughout life is the presence of two very distinct 

non-symmetric binding site environments. In wheat metallothionein EC, for example, 

domain II possesses a Zn3Cys9 cluster (that resembles the β-domain of mammalian MT) 

as well as an additional ZnCys2His2 binding site, while domain I has a Zn2Cys6 cluster.127 

Each of the three zinc binding sites in the wheat EC proteins binds the respective zinc 

with different affinities and it is probable that each site serves a unique in vivo function. 

Though the Zn3Cys9 β-domain cluster and the Zn4Cys11 α domain cluster are more 

similar in mammalian MTs, the different metal:ligand ratios, cluster geometries, and 

solvent accessibility could possibly generate domain-specific properties.  

Traditionally, the α domain, with the higher number of thiols, has been reported as having 

the highest affinity binding sites.128 In fact, 111/113Cd and 1H NMR studies have suggested 

that the first four divalent metals added to apoMT bind exclusively to the α domain, in a 

cooperative manner, while the β-domain non-cooperatively binds from five to seven 

equivalents of added metal.129 These results are supported by experiments where four 

equivalents of cadmium were added to MT and the MT was digested with the non-

specific protease subtilisin.128 The subtilisin digested the β-domain faster than the α 

domain under these conditions, which was thought to be due to decreased enzyme 

accessibility to the α domain peptide backbone as a result of the cadmium being located 

in the α domain. It is not known, however, if metal rearrangements occurred during the 

digestion process or subsequent analyses. More recent experiments have used cysteine 

modifiers to label free cysteines and determine metal binding location within the MT 

peptide strand.130, 131 These experiments also suggest that the first four metals bind 

exclusively to the α domain. Again, it is not known if these reactions are selective only 

for free cysteines or if the modifier causes metal rearrangement from displacement 

following Cys reactions with the modifier. Furthermore, the reaction rates of the 

modifiers for the cysteines may simply be disproportionate between the domains, 

mimicking the results that would be expected for a domain-specific mechanism. 
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Metal exchange experiments, in which cadmium is added to Zn-MTs, have suggested that 

the α domain also cooperatively exchanges its bound zinc for cadmium before the β-

domain does. These results led to the proposal that each domain had a higher propensity 

or metal selectivity, with higher cadmium selectivity in the α domain and higher zinc in 

the β-domain. A notable result is that the X-ray crystal structure for the mixed metal 

Cd5Zn2-MT2 from rat, shows specifically a Cd4 α-cluster and a Cd1,Zn2 β-cluster.94, 95 

 

Figure 1.8: Schematic representation of the two metallation pathways for MT. The 

paths start with apoMT (A) and end with M(II)7MT (F). The blue path (A-B-C-F) shows 

the beaded non-specific pathway and the red path (A-D-E-F) shows the clustered α 

domain-specific pathway. 

There are two potential pathways for metal binding and metal exchange reactions of 

MTs, as shown in Figure 1.8. These are the domain-specific pathway and the non-

specific, or random, pathway. For metal binding and/or exchange to occur in a domain-

specific fashion, the thermodynamics of the set of reactions that describe metal binding to 

MTs must skew significantly in favour of the more specific domain. If metal binding to 

apoMT was α domain-specific, for example, then the reactions that describe metal 

binding to the α domain would have equilibrium constants that were significantly larger 

than those that describe β-domain metallation. As shown in the models of competition 
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reactions in Section 1.4.3, the binding constant difference would have to be larger than 

one log unit in order to generate those levels of selectivity. This means that the reaction 

that describes the formation of the metal saturated Zn4-αMT from Zn3-αMT (adding one 

zinc to a system where there are no free thiols and very limited flexibility) would 

outcompete the reaction that describes the formation of Zn1-βMT from Zn0-βMT (where 

there are nine free thiols that can be organized to form the most thermodynamically stable 

Zn1Cys4-βMT binding site). 

Domain specificity describes two separate but related properties of MTs. The first is the 

addition (or removal) of a single metal type to the MT protein, as is described in detail in 

Section 1.3. The second is the exchange of one metal (Cd) for another metal (Zn) in 

metallated MTs. If it is a single metal, what is the impact of “domain specificity” on the 

metal binding and donation? That is, are metals bound with higher affinities in one 

domain and weaker affinities in another? What about the mixed metal situation and 

domain specificity, for example Cd/Zn-MT or Cu/Zn-MT? Are the metals preferentially 

segregated in mixed metal MT species where only one metal occupies one of the 

domains? The implications of domain specificity on metal binding to MTs will be 

discussed, in relation to the results shown in Chapters 2-5, in Chapter 6.   

1.7 A history of MT metal binding constants 

Despite the long history of stoichiometric and structural studies of MTs, as well as 

numerous investigations of the reactions of MTs with other biological metal centres, only 

a relatively small number of studies have been aimed at assigning numerical values to the 

metal binding affinities of MTs. These values are critical to the understanding of MT 

function, as the values of the various metal binding (and, in reverse, metal 

release/donation) formation constants determine in vivo metal distributions with respect 

to other metal sources and sinks. For example, metal binding sites with higher zinc 

affinity than MT, such as those found in zinc-dependent enzymes (Kenzyme > K(Zn)7MT), 

will acquire zinc from Zn-MT. Weaker zinc interactions, between zinc and non-specific 

zinc binding sites for example (Kzincsite < K(Zn)nMT, n = 0-7), are stripped of zinc by 

unsaturated MT species with higher zinc affinities.   
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 The first available estimations of metal binding affinities assumed that all seven divalent 

metal binding sites were equivalent, determining the average (across all seven binding 

sites) zinc and cadmium binding affinities as approximately (log(KF)) 1012 and 1016 at pH 

7, respectively.132 These estimations were based on pH titrations of rabbit Zn7- and Cd7-

MT monitored through the disappearance of the LMCT bands as a function of pH and the 

values extrapolated to pH 7.0.133 

Through competition with numerous small molecular zinc binding agents, the average 

values for the seven zinc affinities have been reported for a number of MT isoforms. 

These reported averages range, depending on the experimental conditions and technique, 

from (log(KF) 1011 to 1013 for zinc binding to MT. The most recent and significant 

development in determining the metal binding affinities of the zinc binding sites in MTs 

was the assignment of four distinct binding affinities instead of an average affinity for all 

seven sites.52 This report had suggested that the first four zinc bound with the same high 

affinity, while the fifth, sixth, and seventh zinc were bound with significantly decreasing 

affinities. An important result from that study was that the seventh zinc was bound with 

an exceptionally weak affinity relative to the others, which had not been reported 

previously. A follow-up study by another research group showed that this exceptionally 

weak affinity site was not present under their conditions,134, 135 but that they could 

generate the same result by subjecting the protein to much lower pH in the demetallation 

procedure for apoMT preparation.136 Knowledge of four independent zinc binding 

affinities to the seven sites of Zn-MT suggested that, with high enough resolution, and 

from a suitably designed experiment, the first four binding affinities could be determined 

independently as well. 

1.8 Scope of the thesis 

The majority of MT research has focused primarily on the properties of the metal 

saturated Zn7- and Cd7-MTs. Less is known about the partially metallated (M II)n-MT 

(where n = 0-6). These partially metallated species are critical partners in the in vivo 

reactions that occur for the proposed functions of MT. Metal donation and metal 

acquisition in the homeostatic zinc buffering role of MTs generates and fills open zinc 

binding sites, respectively. Therefore, in order to be able to more accurately describe the 
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metallation properties of MTs, more knowledge of these partially metallated species is 

required. The research presented in this thesis focuses primarily on the properties of 

partially metallated MT species, with in-depth analyses of the domain-specific properties. 

This thesis contains six chapters and an appendix. This first chapter provides a 

description of important and relevant concepts of MT research with an emphasis on past 

experimental results, leading up to the state of MT research at the commencement of this 

research. The second chapter describes competitive zinc metallation reactions of intact 

βα-MT1A with apocarbonic anhydrase (apoCA) using ESI-MS. These experiments 

reveal the individual binding affinities for each of the seven bound zinc. Chapter 3 

continues with the competitive zinc metallation reactions of separated α domain and β-

domain fragments of MT1A competing against apoCA to determine the binding affinity 

constants for each of the two-domains in isolation. Furthermore, chapter 3 relates the 

results for the separated domain binding affinities to the intact βα-MT1A in order to 

determine the roles of domain-domain interactions in the intact MT protein. 

Chapter 4 investigates the domain specificity of zinc binding to apoMT and the cadmium 

exchange of Zn-MT through competition between the two-domains using the separated 

β-domain and α domain fragments, this time competing against each other. 

Chapter 5 describes progress toward kinetic and thermodynamic analysis of metal 

binding and exchange with carbonic anhydrase. Various combinations of MT species 

(Zn-MT, Cd-MT, and apoMT) were added to CA in different metallated states (apoCA, 

Zn-CA, and Cd-CA) to probe the kinetics and thermodynamics of CA metal binding and 

exchange. This chapter also addresses the protective nature of MT through the rescuing 

of Cd-poisoned enzymes and toxic metal sequestration.  

Finally, Chapter 6 draws together the results from the previous chapters in order to 

comment on the progress made toward our understanding of the metal binding, release 

and exchange properties of MT. 
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Chapter 2  

2 The zinc balance: Competitive zinc metallation of 
carbonic anhydrase and metallothionein 1A∗ 

2.1 Introduction 

Zinc is the most abundant metal cofactor found in metal-dependent enzymes with nearly 

a quarter of identified metalloproteins containing one or more zinc ions.1, 2 Despite this 

ubiquity, free zinc levels are tightly controlled.3, 4 The homeostatic intracellular 

concentration of free zinc is buffered within a narrow range using myriad zinc specific 

sensors, importers, exporters, and chaperones.5-7 These complex systems work together to 

not only maintain control of the transport and storage of zinc,8, 9 but also to deliver and 

insert zinc ions into newly synthesized zinc enzymes.10-12 When this careful balance of 

zinc is disturbed, a large number of health complications arise.13-15 Zinc is also a 

transcription cofactor and has important roles in cell signaling, development, and proper 

cellular function.16, 17 

Metallothionein (MT) is a ubiquitous family of metal-binding proteins that are critical to 

the homeostatic control of cellular zinc (and other metal) levels. MT has been implicated 

in toxic metal detoxification, oxidative stress response, and essential metal 

homeostasis.18, 19 It is capable of binding multiple metals using the relatively high number 

of cysteine residues for its small size. There are four known human MT isoforms: the 

more common MT1 and MT2 are predominantly expressed in the liver and kidneys, but 

are also expressed in numerous tissues and cell types; MT3 and MT4 are minor isoforms 

specifically expressed in specialized tissues such as the brain and epithelial cells 

respectively.20 Numerous MT1 subisoforms have also been identified. MT1 and MT2 are 

associated with binding both zinc and cadmium in vivo.    

                                                 
∗
A version of this chapter has been published: 

Reproduced with permission from: T.B.J. Pinter, and M.J. Stillman. Biochemistry 53 (2014): 6276-6285. 
Copyright 2014 American Chemical Society.  
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Human MTs bind up to seven zinc ions in tetrahedral (ZnS4(CYS)) clusters using 20 

cysteines. The fully zinc-saturated Zn7hMT1A binds the zinc in two distinct domains.21 

The N-terminal beta domain binds three zinc ions using nine cysteines and the C-terminal 

alpha domain binds four zinc ions using 11 cysteines. There are numerous studies on the 

structure and properties of fully saturated MT’s but little information on the important 

partially metallated species.22-24 Of particular interest is the relevance of these species to 

the donation of zinc from MT to zinc-dependent apoenzymes. 

MT has been identified as a key player in zinc homeostasis and interacts with numerous 

metalloproteins.25 Critical to the in vivo functions of MT species is the zinc occupancy of 

the available metal binding sites. The ability of MT to act as both a zinc donor and 

acceptor depends on the intracellular zinc (and MT) concentration in the cell. Zn7MT has 

been shown to act as a zinc donor to numerous zinc-dependent enzymes, while apoMT is 

capable of removing and accepting zinc from holo-Zn enzymes.26, 27 

With respect to the role of MT in donating Zn to enzymes, very little has been reported 

on the mechanistic detail of these important reactions. However, the property of MT 

acting as a zinc chaperone in the acquisition of free metals and the subsequent release of 

zinc to metalloenzymes has been previously investigated.28-33 Carbonic anhydrase has 

been shown to accept donation of a single zinc ion from zinc-saturated MTs at rates and 

concentrations that support in vivo zinc donation as a function of MT.32 These studies 

have shown that fully saturated Zn-MT is capable of donating zinc to the apoenzymes, 

but the important mechanistic details are not understood.  

Carbonic anhydrase (CA), the first discovered metalloenzyme, binds a single zinc ion in 

its active site using three histidine ligands. CA binds zinc relatively strongly34 with an 

apparent stability constant (log(KF)) of approximately 11.4 at pH 7.35 Following de novo 

protein synthesis, apocarbonic anhydrase must acquire and insert the enzymatically 

necessary zinc ion into the active site. However, the estimated femtomolar4 to 

picomolar36 pool of “free zinc” is an inadequate zinc source for metalloenzymes to 

metallate within a suitable time frame37 and thus, the majority of the zinc must be 

acquired from zinc chaperones, of which Zn-MT is one example. In vivo, numerous zinc 
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sources, chaperones, and enzymes will be in constant competition for the limited amount 

of zinc within the cell. The range of zinc binding stability constants reported for zinc 

importers and exporters provides an approximation of the relative range over which zinc 

is buffered within the cytoplasm. Though exact values are currently not known, there is 

evidence that zinc importation starts at picomolar concentrations.38 Exportation of excess 

zinc is complicated by cellular processes that are designed to protect the cell from metal 

toxicity, but significant cellular disruptions arise when cells are treated with zinc above 

30-100 µM.39 The KF values for MT1A zinc binding, as determined by MT-MT 

competition, apparently fall within the buffering range of functional cells.40, 41  

Studies by numerous groups have shown that Zn7MT transfers a single zinc ion to CA.26-

28 Zn7MT and apoMT have been shown to exchange metals with cadmium substituted 

CA, hypothesized through a protein-protein interaction.42 However, little is known about 

the interactions between the apo or partially metallated MT and the apoCA. Since MT 

exists in a number of partially metallated states,43 a complete understanding of these 

interactions is critical to determine the exact mechanistic details of the vitally important 

metallation reaction of CA. 

Recently, the Stillman group has reported data44, 45 addressing possible binding motifs for 

the partially metallated recombinant human MT1A (rhMT1A), but no experimental data 

have been reported that specifically describe the mechanism for zinc transfers from these 

partially metallated MTs. The conclusion from the binding motif studies was that a 

beaded five zinc structure formed initially; further zinc resulted in the development of a 

clustered two-domain structure containing the full complement of seven zinc ions. The 

consequence of this result was that the last two zinc ions bound with lower binding 

constants, and it was suggested that these two zinc ions would be accessible for donation 

to apoenzymes.46  

In this Chapter, the zinc titration of rhMT1A in the presence of carbonic anhydrase is 

reported. Apocarbonic anhydrase, which remains folded following loss of zinc,47 acts as a 

putative model for understanding the homeostatic control of zinc with respect to the 

metallation of zinc enzymes. The metallation status of CA and rhMT1A during a 
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competitive titration with zinc is reported and the relative stability constants for each of 

the seven independent MT-bound zinc ions is determined with respect to the single zinc 

stability constant for CA. The data indicate that CA outcompetes rhMT1A for the three 

weakest bound zinc ions and shows little competition for the first four zinc bound by 

rhMT1A. Finally, the homeostatic control of zinc concentrations is discussed in relation 

to the suitability of MTs to act as a zinc reservoir for apo zinc-dependent enzymes. 

2.2 Methods 

2.2.1 Preparation of apoMT. 

The rhMT1A was expressed and purified following previously reported methods, and 

detailed in Appendix A.48 The MT sequence used in this study is based on the 

recombinant human MT1A sequence that consists of 72 residues: MGKAAAACSC 

ATGGSCTCTG SCKCKECKCN SCKKAAAACC SCCPMSCAKC AQGCVCKGAS 

EKCSCCKKAA AA. The corresponding DNA sequence was inserted as an N-terminal 

S-tag (for protein stability purposes) fusion protein into a pET29a plasmid and expressed 

in BL21(DE3) E. coli cells as Cd7MT. All solutions were rigorously evacuated and 

argon-saturated to impede cysteine oxidation. Following protein purification, the S-tag 

was removed with a Thrombin CleanCleave Kit (Sigma). Concentrated HCl was used to 

adjust the pH to 2.7 before apoMT was separated from the cadmium using SEC on GE 

Sephadex G-25 size exclusion media using 5 mM formic acid pH 2.7 buffer as the eluent. 

The deoxygenated apoMT was simultaneously concentrated and buffer exchanged to pH 

7.0 using Millipore Amicon Ultra-4 centrifuge filter units under argon (3 kDa MWCO). 

2.2.2 Preparation of apoCA. 

Bovine CA (Sigma) was first purified on a Sephadex G-50 gel filtration column with 

5 mM pH 7.4 ammonium formate buffer as the eluent. The fractions containing only pure 

carbonic anhydrase 2 were pooled, and concentrated with 10 kDa MWCO Amicon 

centrifuge filter units. The zinc was removed from the CA through modification of 

methods previously reported.49 An equal amount of 50 mM 2,6-pyridinedicarboxylic acid 

pH 6 (PDA) was added to the concentrated CA and spun down in the filter unit. The PDA 

zinc wash was repeated 6 times. To remove PDA from apoCA prior to MS experiments, 
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the protein was exhaustively buffer exchanged to 5 mM ammonium formate pH 7.4 until 

neither PDA nor zinc were detected in the filtrate.  

2.2.3 ESI-MS procedures. 

Stock apo-rhMT1A concentrations were determined by remetallation of a small fraction 

of protein with Cd2+; formation of Cd7MT was monitored through the 250 nm thiolate-to-

cadmium charge transfer band, ε(250) = 89,000 M-1cm-1. Stock apoCA concentrations were 

determined using ε(280) = 45,000 M-1cm-1. Zinc acetate stock (10 mM) was prepared in 

deionized water; all molar equivalents of zinc were determined through atomic 

absorption spectroscopy. Equal concentrations of both stock apoproteins were mixed in a 

vial and equivalents of zinc were added under argon atmosphere and allowed to 

equilibrate for a minimum of 3 min between addition and data collection; separate 

samples were left for up to 1 h (data not shown), and there was no change in zinc 

distribution with longer incubation times. ESI mass spectral data were collected on a 

Bruker Micro-TOF II (Bruker Daltonics, Toronto, ON) operated in the positive ion mode 

calibrated with NaI. Settings: scan = 500-4000 m/z; rolling average = 2; nebulizer = 2 

bar; dry gas = 80°C @ 6.0 L/min; capillary = 4000 V; end plate offset = -500 V; capillary 

exit = 175 V; Skimmer 1 = 30.0 V; Skimmer 2 = 23.5 V; Hexapole RF = 800 V. The 

spectra were collected for a minimum of 2 min and deconvoluted using Maximum 

Entropy of the Bruker Compass DataAnalysis software package. All titrations were 

performed in at least triplicate to ensure accuracy and reproducibility of results. 

2.3 Results  

2.3.1 Mass spectral data for the competition between apoMT and 
apoCA for added zinc 

Figure 2.1 shows a selection of the deconvoluted mass spectral data recorded during a 

competitive zinc titration to a solution containing equal concentrations of apo-rhMT1A 

and apoCA. The deconvoluted data shown here were calculated from the charge state 

spectra in Figure B-1 (Appendix B). Figure 2.1 shows the formation of the fully 

metallated Zn7MT and ZnCA (F) as a function of six representative steps of the titration 

(A – E).  
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Figure 2.1: Deconvoluted ESI mass spectral data recorded for the equimolar 

competitive titration of apoCA and apo-rhMT at pH 6.8. The apo-proteins were 

mixed to a final concentration of 30 µM under argon and zinc (1 mM in diH2O) and were 

aliquoted to the combined protein solutions. The zinc speciation of the MT and CA is 

highlighted with vertical gray lines. The mass range for each species has been normalized 

to 100% relative abundance. 
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The abundance of each species was plotted relative to the most abundant species of the 

protein: apoMT and apoCA in Figure 2.1A, and Zn7MT and holoCA in Figure 2.1F. Zinc 

equivalents were determined from the concentration of the two proteins and AAS 

measurements of the zinc solution. These equivalents refer to a ratio such that one zinc 

equivalent would fill a single zinc binding site. Therefore, eight zinc equivalents (seven 

for MT and one for CA) are required to fill all the sites, completing the titration.  

The relative concentrations of each metallated species were plotted in Figure 2.2 as a 

function of the equivalents of zinc added stepwise. The individual zinc metallated species 

were extracted from the mass spectral data. Figure 2.2A shows the experimental data for 

the eight rhMT1A species (apoMT to Zn7MT). Figure 2.2B shows the corresponding 

experimental data for apoCA and ZnCA, as a function of the equivalents of zinc added. 

The CA was 50% metallated when 6 equiv of zinc was added. The change in the zinc 

binding efficiency of apoCA is shown in Figure 2.2C as the first derivative 

(d[apoCA]/d[Zn Added]) of the metallation of the apoCA line shown in Figure 2.2B. The 

significance of the data representations in Figure 2.2C will be discussed in Section 2.4. 

2.3.2 Modelling the competition reaction 

In order to determine the zinc binding affinity for each of the rhMT1A species, the 

metallation state at each specific zinc loading was simulated from a model that 

minimized the root mean square difference between the experimental and a theoretical 

data set determined by the 8 binding constants. The model was based on seven sequential 

bimolecular reactions that resulted in the formation of Zn7MT from apoMT and the 

competitive reaction of apoCA forming ZnCA. The relative concentrations of each 

species depend on the relative binding constants (KMT1-7 and KCA1).  
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Figure 2.2: Experimentally determined zinc status of MT (A) and CA (B) during the 

stepwise competitive zinc metallation. Based on the ESI mass spectral data partially 

shown in Figure 2.1. Panel C shows the metallation efficiency of CA calculated as the 

first derivative (d[apoCA]/d[Zn2+ added]). 
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Figure 2.3: Simulation of the competitive zinc metallation of apoMT (A) in the 

presence of apoCA (B). The simulation uses log10(KF) values for the MT of 12.35, 

12.47, 12.52, 12.37, 12.21, 12.05, and 11.80 for the seven sequential metallation events in 

the formation of Zn7MT. These values were derived from extraction of the competition 

speciation of the MT versus the known log10(KF) of CA of 11.4. 

Figure 2.3 shows a fit of the apo-rhMT1A and apoCA ESI mass spectral data using seven 

consecutive equilibrium binding constants for the apoMT coupled to the single 

metallation equilibrium for the apoCA. The simulated competition reaction used the 

following criteria: (i) the log KF of CA is 11.4 under the conditions of the experiments,35 

and (ii) all reactions were coupled and reversible such that zinc could freely redistribute 

to the preferred occupancy. This model was used to simulate the speciation profiles 

shown in Figure 2.2 to allow direct assessment of the accuracy of the fits. The seven KF 

values for MT zinc binding, determined by the model, which most closely fit the 

experimental data, were log[KF(1-7 Zn)]: 12.35, 12.47, 12.52, 12.37, 12.21, 12.05, and 11.8.   
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Apo-βα-rhMT + Zn2+ 
1K

⇌  Zn1-βα-rhMT log(K1) = 12.35 

Zn1-βα-rhMT + Zn2+ 
2K

⇌  Zn2-βα-rhMT log(K2) = 12.47 

Zn2-βα-rhMT + Zn2+ 
3K

⇌  Zn3-βα-rhMT log(K3) = 12.52 

Zn3-βα-rhMT + Zn2+ 
4K

⇌  Zn4-βα-rhMT log(K4) = 12.37 

Zn4-βα-rhMT + Zn2+ 
5K

⇌  Zn5-βα-rhMT log(K5) = 12.21 

Zn5-βα-rhMT + Zn2+ 
6K

⇌  Zn6-βα-rhMT log(K6) = 12.05 

Zn6-βα-rhMT + Zn2+ 
7K

⇌   Zn7-βα-rhMT log(K7) = 11.80 

ApoCA + Zn2+ 
CAK

⇌  holo-CA   log(KCA) = 11.4 

Scheme 2.1: The sequential metallation reactions for the competitive titration of zinc 

to apoMT and apoCA. The apparent stability constants for each sequential zinc addition 

to MT are indicated by log(Kn) (n = 1-7) and the apparent stability constant for zinc 

binding to apoCA is indicated by log(KCA).The seven logKF values for MT are plotted in 

Figure 2.4A as a function of the MT zinc loading in order to compare the magnitudes of 

the zinc binding constants. While the first two constants are below the value of KMT3, the 

values of KMT3 to KMT7 follow the expected linear decrease that results from the statistical 

reduction of available zinc binding sites. 

In Figure 2.3A the stepwise metallation of rhMT1A proceeds through 6 distinct 

intermediates between apoMT and Zn7MT. Figure 2.3B shows the simulated metallation 

of apoCA as a function of increasing concentration of zinc. There is very close alignment 

between the simulated data in Figure 2.3A and the experimental data in Figure 2.2A for 

the metallation of MT and between the simulated data of Figure 2.3B and the 

experimental data from Figure 2.2B for the metallation of CA. Figure B-2 (Appendix B) 

shows the overlaid model and experimental traces for assessment of the quality of the fit. 
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Because the set of eight K values is determined in a single calculation, we have 

confidence that the K values determined in the model represent accurate values under the 

conditions of the experiment. It should be noted that the individual values of each Kn (n 

= 1-7) impact the quality of the fit for all other species since the equilibrium equations are 

coupled and successive while also being in competition with each other and the CA. The 

experimental error on all reported K values by the model is on the order of ±0.3 log units. 

An overlay of each individual species fit and experimental data is shown in Figure A-2 

for comparison. It should be noted that since the model minimized the error and provided 

a fit for all 10 speciation traces (apo to Zn7MT and apo and holoCA) simultaneously that 

not all the model traces exactly match the data; Zn5- and Zn6MT, for example, show 

some deviation between the model and experimental data. 

2.3.3 Relative MT binding affinities are reflected in the raw data 

Figure 2.4B shows the superimposition of the change in binding efficiency of apoCA as a 

function of the total zinc load inverted from Figure 2.2C (line) and the binding constants 

calculated for the seven zinc rhMT1A species (points) relative to the first K. This figure 

shows how the experimental data reflect directly the calculated K values for both MT and 

CA. The importance of this figure is that the precise trend in the value of K values that 

were calculated in the model from the raw experimental data of the metallation of CA is 

observed. These data are particularly important in confirming the increase in K2 and K3 

for the metallation of MT. 

Figure 2.5 shows the experimental (red) mass spectral data at representative zinc 

additions compared with the simulated (black) mass spectral data predicted by the model 

shown in Figure 2.3. Figure 2.5A-G show the experimentally determined relative 

abundance of seven zinc containing MT species from the full data set. Figure 2.5H-N 

show the predicted mass spectral data based on the model used in Figure 2.3 at these 

same zinc loadings. Figure 2.5 O-U show the experimental and predicted mass spectral 

data at the same zinc loading values for CA. Only the apo and holo species profiles are 

shown because CA binds a single zinc. 



www.manaraa.com

46 

 

 

Figure 2.4: Calculated stability constants (A) and the experimental data reflecting 

those values (B). (A) The calculated fitted K values of MT that best fit the data shown in 

Figure 2.2 to produce Figure 2.3 based on the competitive metallation of apoMT in the 

presence of CA. The solid line shows the linear trend of decreasing K values as the MT 

metallates. (B) Superimposition of the relative metallation efficiency of apoCA (solid 

line) plotted against the calculated log(KF) values (points). The two data sets were scaled 

such that the initial values (metallation efficiency and first MT zinc binding K) were 1. 
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Figure 2.5: ESI mass spectra based on experimental data (red) and data produced 

by simulating the titration using the best fit KF values (black). A-G show the 

experimental mass spectral data collected for all ZnnMT (n = 0-7) species during the 

competitive titration of apoCA and apoMT. H-N show the predicted ESI mass spectral 

data for the same species generated from the simulated titration. O-U show both the 

experimental and predicted ESI mass spectral data for apo and holoCA species. 
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2.4 Discussion 

2.4.1 Spanning the ladder of MT binding constants 

MT is a metallochaperone with the proposed role of supplying zinc to apoenzymes. 

While numerous studies have discussed the metallation of CA, even including 

interactions with Zn7MT, no studies have previously addressed the mechanism for a 

potential role of zinc buffering between MT and the apoenzyme could be found in the 

literature. Results from both the Stillman lab and Maret et al., indicate that a ladder of 

binding constants exists for the binding of zinc to metallothionein.44, 50  

Previous results showed that MT1A possesses seven independent sequentially decreasing 

zinc binding affinities from zinc competition experiments between the full rhMT1A 

protein and individual N-terminal β and C-terminal α domains. The previous work used a 

much simpler modeling procedure and manually set the span of the seven K values to 

extend over the data reported by Maret and co-workers50 as a best estimate for the K 

values. In this current report, the modeling of the K values is locked to the known value 

of carbonic anhydrase metallation. The model mathematically minimized the errors on 

the values of K so the model best fits the data. In this way, this current set of K values has 

both confirmed the existence of the seven independent zinc binding affinities and 

calibrated their values to accommodate the known value of CA. 

To place the metallation of CA within this ladder, an experiment in which both 

aporhMT1A and apoCA could compete for zinc as it was added in a stepwise manner 

was designed. The competition experiment is unique in that it is able to leverage the 

difference in the relative binding affinities for such high affinity sites.51 In the presence of 

a competitive zinc binding site, such as that found in CA, the two proteins will 

redistribute zinc to form the thermodynamically preferred zinc distribution that will be 

governed by the relative magnitudes of the eight equilibrium constants. These data show 

how apoCA metallates with a sequence directly related to the relative binding constants 

of the seven individual sites in MT. This establishes the buffering properties afforded by 

MT for zinc. 
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Figure 2.1A shows how the initial zinc binds in a distributed fashion to the rhMT1A and, 

to a minor extent, to the CA. The important observation is the change that takes place 

when a further three zinc equivalents are added and the data in Figure 2.1B recorded. At 

this point during the titration, the Zn3 and Zn4MT species dominate the distribution of 

zinc metallation, whereas, in contrast, the ZnCA fraction has increased only slightly. 

These data clearly and unambiguously show that MT is binding a greater fraction of the 

added zinc than is CA. This can only occur under the equimolar conditions of the 

competition experiment, if the relative binding constants favor MT zinc binding. 

Addition of a further 2 equiv (to 5.6 total added; Figure 2.1D) results in both MT and CA 

binding significant fractions of the added zinc. This means that the binding site affinities 

in MT must be more similar to the binding site affinity of CA. The major change in zinc 

binding to CA occurs with the addition to 6.5 equiv (Figure 2.1E). Now approximately 

70% of the CA is metallated.  

Figure 2.2A clearly shows the stepwise metallation proceeds as reported previously for 

zinc binding, in that each individual species (meaning Zn1, to Zn5) forms and then is 

replaced with approximately the same fractional composition of about 30% maximum. At 

each point in the titration, the data here show the distribution of species simply by 

constructing a fractional distribution.  For example, at the 4.0 zinc added point, the slice 

through the data shows that the relative concentrations are: Zn4 > Zn3 > Zn5 > Zn2 > Zn6 

> Zn1 > Zn7 > apoMT. 

Figure 2.2B shows that the binding of zinc to apoCA takes place nonlinearly as a function 

of zinc added. In the region from 0 to 5 zinc added, the data show that zinc binding to CA 

is dependent directly on the relative binding constant for the individual sites in MT. This 

means that, for example, the small fraction of the initial addition of zinc is bound by CA 

when Zn1MT is forming. However, when Zn3MT forms at about three zinc added, CA 

metallation is depressed so that between three and almost five zinc added only about 5% 

of the CA metallates, due to the increase in competition from the MT. The CA 

metallation trends, therefore, mirror the span of the seven MT binding affinities: when 

the binding affinity for CA is closer to that of a single site in MT, CA metallates, but 

when the binding affinity of CA is much less than MT, MT metallates. 



www.manaraa.com

50 

 

The sensitivity of apoCA metallation to the presence of the seven competing MT sites 

can be expressed by taking the derivative of the metallation status of apoCA as a function 

of the number of added zinc (Figure 2.2C). From points a to b, the binding affinity 

difference increases between apoCA and the MT species and CA metallation becomes 

less efficient with respect to MT metallation (Zn1-3MT bind while CA essentially stops 

binding zinc). In the b-c region, CA metallation is essentially zero (less than 10% change 

over 3 equiv of zinc added), in contrast to MT metallation of Zn2-4MT. However, the c-d 

region shows the onset of apoCA metallation; now CA is competing more efficiently 

against the formation of Zn6-7MT. The unusual region is the pivot point between b-c and 

c-d because at this point there is a distinct reduction in the binding affinity of the 

competitive species (ZnnMT). This pivot point is interpreted to represent the threshold in 

the binding affinities of the MT species with respect to apoCA. This is demonstrated in 

Figure 2.2C because if the binding affinities for every MT site were the same, the 

derivative (d[apoCA]/d[Zn Added]) would be constant for a competitor with the same 

binding affinity.  

2.4.2 Trends in MT zinc binding affinities 

The binding affinity data calculated for Figure 2.3 introduced an interesting trend. 

Whereas the sequence of binding affinities for MT to was expected to diminish, as noted 

above, the fits required that K1 and K2 should be lower than K3. The effect of this can be 

seen in Figure 2.2B, as described above, where apoCA metallates proportionally with a 

greater fraction than at the higher zinc-added points. The seven calculated equilibrium 

constant values determined for each zinc addition from the competitive titration 

experiments shown in Figures 2.1-2.5 are shown in Scheme 2.1 (note that the value of 

log(KCA) was taken from the literature as 11.4).35 

The unexpected increase in zinc affinity for the first two binding constants (where K1 

(apoMT) < K2 (Zn1MT) < K3 (Zn2MT)) could possibly arise from the much greater 

fluxional nature of the apoMT strand and therefore lack of structured zinc binding sites as 

compared to the partially metallated (and therefore structured) Zn1- and Zn2MT species. 

The binding of the first and second metal must rearrange the peptide backbone to 

accommodate metal binding. This rearrangement facilitates the subsequent metallation 
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events (Zn1- to Zn2 and Zn2- to Zn3MT) in a manner not previously observed due to the 

fact that multiple species are metallating simultaneously as shown in the modeling and 

especially the deconvoluted and raw ESI mass spectral data. Once three zinc ions have 

been incorporated by the MT strand, this effect is no longer observed, since the entire 

strand now must now possess some organized structure.  

The change in structure from the charge state distribution following metallation of the 

apoMT has been previously discussed. For example,  this same trend was observed in 

arsenic binding to MT52 and may be connected with the globular conformation of apoMT 

suggested from the ESI mass spectral data.53 This arsenic work showed that the kinetics 

of arsenic binding was mostly controlled by the rate of the on reaction (kon), as the rate of 

the off reaction (koff) for each AsxMT species was presumed to be similar. Since the 

equilibrium binding constant (K) equals the ratio of (kon / koff) and since the koff values 

were presumed similar, those kinetic parameters reflect directly the equilibrium binding 

of arsenic to MT. While the values and magnitudes are certainly not comparable, and 

even though it involves a different metal, these arsenic data highlight the surprising 

similarity in the trends between these kinetic arsenic data and the zinc equilibrium data 

described here.  

The values of the subsequent Kn (n = 3-7) follow the expected trend for distributed 

metallation in which the number of sites available diminishes sequentially so that the 

value of Kn also diminishes. Recent results have shown that even low zinc occupancy MT 

species (ZnnMT where n = 0, 1 or 2) adopt structural characteristics that differ from the 

traditional view of apoMTs existing as a pure random coil.54, 55  

The span of the seven stability constants, relative to the apoCA zinc binding constant, 

shows that MT zinc binding occurs throughout the range of zinc enzyme stability 

constants, even at the start of the titration against much higher affinity MT binding sites. 

As the MT binds zinc sequentially into each site, the binding constants decrease to a point 

where the apoCA can begin to compete more efficiently with MT for the incoming zinc. 

CA then continues to compete with MT for the incoming zinc until it saturates, and MT 

binds the remaining incoming zinc until it too is saturated. 
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2.4.3 Modelling reactions between CA and a competitor 

To visualize the effects of the relative binding affinities on the zinc distribution the 

results of a computational simulation that demonstrates the major changes that take place 

in the fractional distribution of zinc as a function of the relative magnitudes of the 

binding affinities of an example metal chaperone (MT) and a metal-dependent enzyme 

(CA) have been included.  

For simplicity, only a single site competitor was used. The effect of different ratios of the 

binding affinities was explored and the results are shown in Figure 2.6. The panels in 

Figure 2.6 examine the effect on the metallation of apoCA for five scenarios: (A) where 

Kcomp < KCA by 0.5 log units; (B) where Kcomp = KCA; (C) where Kcomp > KCA by 0.5 log 

units; (D) where Kcomp > KCA by 1 log unit; and (E) where Kcomp > KCA by 1.5 log units. 

What is important in this figure is that the trend in the metallation of apoCA for the set of 

values of binding affinities obtained from the fit reported in Figure 2.3 can be simulated. 

Figure 2.6D shows that competition with a competitor whose zinc binding affinity is 

approximately 10x stronger than CA results in inefficient metallation until over 50% of 

the zinc has been bound to the competitor. The trend in apoCA metallation, therefore, 

illustrates the situation at the different points in Figure 2.2B. Figure 2.6A shows 

metallation taking place efficiently because the competitor binding constant is modelled 

to be less than that of CA. Clearly, the amount of zinc that is available for an enzyme to 

acquire from MT is dependent on the relative zinc binding constants. An enzyme with a 

high zinc binding constant, has a much larger zinc pool available than those enzymes that 

bind zinc more weakly. The series of binding constants represent, in sequence from high 

to low, the increase in the availability of zinc to a zinc acceptor. 

The efficiency in metallation of the apoCA, meaning the fraction of the added zinc that 

apoCA binds, confirms the presence of the multiple binding affinities of the seven MT 

sites. This effect is directly dependent on the intricate equilibrium chemistry that takes 

place when eight possible binding sites vie for the zinc that is added in a stepwise 

manner. That the binding affinity of apoCA is smaller than the last zinc bound to the MT 

sets up the buffering action controlled by the seven sites of MT. 
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Figure 2.6: Modelled CA speciation profiles for the simulated competitive zinc 

titration between CA and a single zinc binding site. The competitor has been modelled 

with zinc affinity increasing by 0.5 log units A (10.9) to E (12.9). The simulated titration 

requires 2 equiv of zinc to complete. The zinc occupancy of the CA depends on the 

relative difference in the zinc binding affinity from the competitor. These model traces 

highlight the sensitivity of this modelling for interpreting speciation and determining 

relative zinc affinities. Log(KCA) was set to 11.4. 
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When the cell is in a state of zinc excess, MT production is induced. It would be 

advantageous for the newly synthesized apoMT proteins to rapidly bind the weakly 

associated zinc that turn on zinc-specific transcription factors such as MTF-1. The first 

few zinc that are bound to MT, therefore, act as a deep sink of bound zinc. This deep sink 

is only accessible during times of extreme zinc deficiency. The rest of the zinc binding 

constants decrease approximately linearly. The more weakly bound zinc act as a shallow 

source of zinc, to be exchanged between other zinc sinks and enzymes. The proposal is 

that MT acts as both a zinc chaperone (one of many others) and a zinc sensor for the cell. 

When zinc levels are low and the cell is zinc-starved, MT binds all available zinc, which 

has two effects: to turn on zinc importers, and to cause upregulation of genes that code 

for zinc importation. The facility of zinc-loaded MT to donate occurs when the cell is 

zinc-loaded and the most predominant MT species have >6 zinc bound. These species 

supply the weakly bound zinc to zinc-dependent apoenzymes; the most weakly bound 

zinc ion is also likely constantly exchanging with weak zinc binding sites, highlighting 

the role of zinc buffering. If the cell contains zinc in excess of the MT binding 

capabilities, these “free” zinc are bound by non-specific zinc sites, sequestered into zinc 

vesicles, and/or bound by and exported by zinc exporters,56, 57 which have lower zinc 

binding constants. Thus MT is able to act as a zinc buffer, maintaining the appropriate 

cellular concentration of zinc by utilizing the range of the zinc binding constants. 

In conclusion, in this Chapter, the precise metallation status of both apoCA and apoMT 

during zinc metallation was shown. By using a competitive metallation strategy, the 

relative stability constants for each of the seven independent, sequential binding reactions 

for zinc binding to apoMT was calculated. The experimental data indicate that CA out-

competes MT only for the three weakest bound zinc ions – these are the last zinc to bind 

to the MT. The fractional zinc occupancies in terms of the speciation for each of the 10 

species that coexist during the titration were reported and modeled by simulations 

involving 8 competitive bimolecular reactions. The change in fractional zinc metallation 

of the apoCA as a function of zinc added to the mixture of apoCA and apoMT was shown 

to mirror the relative values of the binding affinities for the seven MT sites. These data 

provide a detailed and sensitive indication of the buffering role of Zn-MT both in 

providing a zinc sink and in delivering zinc to a zinc-dependent enzyme. 
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Chapter 3  

3 Putting the pieces into place: Properties of intact zinc 
metallothionein 1A determined from interaction of its 
isolated domains with carbonic anhydrase∗  

3.1 Introduction 

Metallothionein is a cysteine-rich family of proteins that are involved in the homeostatic 

control of essential metals and the detoxification of toxic heavy metals.1 These essential 

roles are underscored by the prevalence of metallothioneins throughout all forms of 

Life.2, 3 Numerous studies have shown that mammalian metallothioneins (MTs) bind a 

wide variety of metals, with the most well studied and biologically relevant being the 

essential metals zinc(II) and copper(I) and toxic cadmium(II).4-7 

MTs bind up to seven divalent metal cations using its complement of 20 cysteines. For 

saturated (MII)7-βαMT, the coordinated metals are clustered into two distinct domains: an 

N-terminal β domain that uses nine Cys to bind three metals; and, a C-terminal α domain 

that binds four metals with 11 Cys. The structures of these metalloclusters were 

elucidated using 113Cd NMR8 and X-ray crystallographic9 techniques.10 The structures of 

Zn7- and Cd7-MT show that the two-domains are separated by a small variable length 

(depending on the species and isoform) linker region. No NMR or X-ray structures are 

available for unsaturated MTs due to increased fluxtionality of the protein.  

There has been much discussion regarding the domain properties of metal-saturated MTs. 

For example, the binding mechanism of cadmium and zinc to apoMT has traditionally 

been reported to involve a domain-specific mechanism where the first four metals bind to 

the α domain cooperatively. The two-domain structure adopted by metal-saturated MTs 

has also been suggested to be an important factor in the MT-protein interactions that are a 

                                                 
∗
 A version of this Chapter is in press: 

Reproduced with permission from: T.B.J. Pinter, and M.J. Stillman. Biochem. J. (2015) , in press, DOI: 
10.1042/BJ20150676. Copyright 2015 Portland Press. 
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necessary element of the metal homeostatic roles of MTs.11 The evolutionary advantages 

of the MT domains have also been investigated.2, 12-14 

Less is known about the domain properties of partially metallated MTs, though they do 

exist in vivo, as demonstrated by multiple studies.15-19 The proposed functions of MT 

require either accessible cysteines (for metal exchange), free cysteines (to be used for 

redox chemistry by forming disulfides in response to oxidative cellular stress), or open 

coordination sites (from the synthesis of the upregulation of MTs in response to acute 

metal toxicity).20, 21 The structures adopted during metallation, and the properties of the 

intermediate metallation states (Zn3-6-βαMT for zinc), dictate the type of chemistries that 

occur in vivo. The zinc binding affinities of Zn5-7-βαMT, for example, permit zinc 

donation to zinc dependent apo-enzymes.22, 23 On the other hand, the first three zinc bind 

to MT with higher affinity forming Zn1-3-βαMT, which is well suited for zinc storage.  

Carbonic anhydrase, the enzyme that catalyzes the hydration of carbon dioxide to form 

carbonic acid driving respiration, binds a single zinc ion in its active site.24 This zinc ion 

is solely catalytic, with no significant change in protein structure upon removal of the 

zinc.25 Previous work on the interaction of MT with CA demonstrated that zinc-saturated 

MTs donate a single zinc ion to apoCA.23, 26-28 Other reports have shown that apo- and 

Zn7-MT are able to exchange with CdCA, through protein-protein interactions (PPIs), 

rescuing the enzymatic function of cadmium-poisoned CA.29 

We recently reported on zinc competition reactions between apoCA and apoMT1A 

demonstrating that the last two zinc bound to MT (Zn6- and Zn7-MT1A) had binding 

affinities that were low enough to permit competitive zinc binding by apoCA, and 

therefore other cellular zinc binding sites.30 This report also provided evidence in support 

of our current model of MT zinc exchange where the two-domain Zn7-βαMT is able to 

donate two zinc ions from the metal-saturated clustered domains to form Zn5-βαMT, a 

structure using all 20 Cys in terminal coordination of the five zinc ions.31, 32 However, 

despite the clarity in the values of the seven MT zinc binding affinities, assigning the 

location of the cysteines that bound the zinc within the sequence was not possible so the 

actual domain that donated the first zinc was unknown. We also hypothesized that the 



www.manaraa.com

61 

 

suppression of the first two MT zinc binding affinities (relative to the linear trend set by 

the remaining five log(KF)’s) was due to tangling of the apoMT strand, by which we 

mean the unscrambling of the cysteine ligands from the apoMT bundle required to form 

the tetrahedral coordination. By separating the domains, we challenge the significance of 

the presence of 20 cysteines in the intact protein with respect to zinc donation to metal-

dependent enzymes. 

In this current report, we relate the zinc binding properties of the domain fragments, 

determined from competition between the apo-fragments and apoCA, to the domain-

effects of zinc binding and zinc donation in the intact protein. We show the metal 

distribution between each apo-fragment and apoCA as a function of added zinc to 

solutions containing equimolar concentrations of the apo-fragment and apoCA. Using 

modeling procedures that have been previously described, we calculated the zinc affinity 

constants for the four zinc binding events in the αMT fragment and the three for the βMT 

fragment. The data show that the αMT fragment outcompetes the apoCA for added zinc 

until it is nearly saturated. The apoCA is able to effectively compete with the βMT 

fragment after Zn1β has formed. These results suggest that the highest affinity zinc 

binding sites are more localized in the α domain, and the weaker affinity zinc binding 

sites in the β-domain. This suggests that the first zinc donated to CA is from the β-

domain in the intact two-domain protein. 

3.2 Methods 

3.2.1 Purification of recombinant MT1A domain fragments. 

The amino acid sequences for the separated domains used for this study were based on 

human MT1A. The β-MT domain sequence comprised 38 residues: MGKAAAACSC 

ATGGSCTCTG SCKCKECKCN SCKKAAAA, and the α-MT domain fragment 

sequence comprised 41 residues: MGKAAAAC CSCCPMSCAK CAQGCVCKGA 

SEKCSCCKKA AAA. We do note here that these sequences include additional residues 

in the form of polyA’s to the N and C-termini compared to the native MT1A, which 

model the connecting linker region of the intact peptide and also do not significantly alter 

metal binding properties. Recombinant MT fragments were prepared following methods 
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that have been described in detail elsewhere, and in Appendix A.33 In brief, pET29a 

plasmids, containing DNA sequences corresponding to the sequences for the isolated 

domains, were transformed into BL21(DE3) Escherichia coli. The recombinant 

fragments were overexpressed in 4 L of cultured lysogeny broth (Miller) supplemented 

with cadmium. The cadmium-saturated MT fragments were isolated from disrupted 

(Constant Systems, UK) cellular lysate with SP anion exchange columns (GE Healthcare, 

USA). The S-tag was removed from the domain fragments using thrombin CleanCleave 

kits (Sigma). Purified MT fragments were concentrated using a pressurized cell 

concentrator fitted with a 3K MWCO membrane and stored in aliquots at -20°C until use. 

All purified protein solutions were thoroughly evacuated and argon-saturated in attempt 

to impede cysteine oxidation. 

3.2.2 Preparation of apometallothionein fragments. 

Aliquots of purified MT fragments were thawed under vacuum and acidified to pH 2.7 

with concentrated formic acid to protonate cysteines and release bound cadmium. Protein 

was then separated from the freed cadmium on G-25 size exclusion media equilibrated 

with argon-saturated, dilute formic acid (pH 2.7). Eluted metal-free protein was 

concentrated and buffer exchanged with 5 mM ammonium formate (pH 7.0) using 

Millipore Amicon Ultra-4 centrifugal filter units (3 kDa MWCO) under argon. Small 

fractions of the final, pH adjusted apo fragments were remetallated with cadmium and 

UV-visible absorption spectroscopy (Cary 50, Varian Canada) was used to determine 

final stock protein concentrations; ε250nm = 36,000 M-1cm-1 and 45,000 M-1cm-1 for Cd3-

βMT and Cd4-αMT, respectively. 

3.2.3 Preparation of apocarbonic anhydrase. 

The removal of zinc from carbonic anhydrase followed modification of previous 

methods.34 10 mg of bovine carbonic anhydrase II (Sigma) was dissolved in 4 mL of 50 

mM 2,6-pyridinedicarboxylic acid (Sigma), pH 6.0 (PDC) and equilibrated on ice for 15 

min. Millipore Amicon Ultra-4 filters (10k MWCO) were used to separate zinc-PDC 

from protein and fresh PDC was added back to the protein solution. In total, the protein 

was treated with 6 aliquots of fresh PDC chelating buffer to remove all of the zinc bound 
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to carbonic anhydrase. To remove PDC, the apo-protein solution was buffer exchanged to 

argon-saturated, 5 mM ammonium formate, pH 7.0 until no PDA was detected in the 

filtrate. The concentration of the apoCA was determined immediately prior to MS 

experiments using UV-visible absorption spectroscopy (ε280nm = 54,000 M-1cm-1).35, 36         

3.2.4 Zinc and cadmium titrations. 

5 mM zinc acetate (Fisher Scientific) was prepared in deionized water. In separate 

experiments, equal concentrations of either apo-βMT or apo-αMT were mixed with 

apoCA in acid washed vials. Equivalents of zinc were then added to the mixed protein 

solutions under argon atmosphere. These solutions were equilibrated on ice for 3-5 

minutes before ESI measurement. No change in speciation was observed with longer 

equilibration times (up to 120 min data not shown). The stepwise addition of the zinc 

continued until each protein was zinc saturated. Titrations were repeated in triplicate. The 

zinc content of the apo-proteins, stock zinc solution and titration endpoints were verified 

using atomic absorption spectroscopy (AA 240, Varian, Canada).    

3.2.5 ESI-MS parameterizations.  

The ESI mass spectral data were collected on a Bruker Micro-TOF II (Bruker Daltonics, 

Toronto, ON) operated in the positive ion mode calibrated with NaI as an external 

calibrant. The settings used were: scan = 500 - 4000 m/z; rolling average = 2; nebulizer = 

2 Bar; dry gas = 85°C @ 6.0 L/min; capillary = 4000 V; end plate offset = -500 V; 

capillary exit = 175 V; Skimmer 1 = 30.0 V; Skimmer 2 = 23.5 V; Hexapole RF = 800 V. 

The spectra were collected for a minimum of 2 minutes and deconvoluted using the 

Maximum Entropy algorithm of the Bruker Compass DataAnalysis software package. 

3.3 Results  

3.3.1 Competition for Zn2+ between apoCA and apo-αMT. 

Figure 3.1 shows a selection of the deconvoluted mass spectral data recorded during the 

titration of Zn2+ into a solution of apoCA and apo-αMT. This figure show the stepwise 

formation of zinc saturated αMT and ZnCA (Figure 3.1F) over six steps of the titration 

(Figure 3.1A-F). The species have been plotted relative to the most abundant species in 
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the solution for each protein: apo-αMT and apoCA in Figure 3.1A and Zn4-αMT and 

holo-CA in Figure 3.1F. The mole equivalents of zinc added (indicated in each panel of 

the figure) were determined from the amount of added zinc based on the concentrations 

of the two proteins in solution, and verified by AAS measurements. These mole 

equivalents are stated as the amount of zinc required to saturate a single zinc binding site, 

thus 5 equivalents are required to complete the titration for the four zinc binding sites in 

αMT and the one zinc binding site in CA. A very small fraction of the MT did oxidize by 

the end of the titration, but this did not impact the results of the fitting.  

 

Scheme 3.1: Competitive and sequential metallation reactions of apo-αMT and 

apoCA. 

Figure 3.2 shows the relative populations of each of the zinc species during the stepwise 

zinc titration that were extracted from the deconvoluted ESI mass spectral data. Figure 

3.2A shows that apo-αMT metallates non-cooperatively with zinc under the conditions of 

the experiment as previously described at higher pH.37 Each of the five αMT species (apo 

to Zn4) dominates the species distribution for the amount of zinc added to the solution as 

expected for non-cooperative binding Zn1-αMT dominates at one equivalent of added 

zinc, Zn2-αMT at two equivalents of added zinc, etc. Figure 3.2B shows the 

corresponding apoCA and holo-CA population data that were measured simultaneously 

with the αMT data and also plotted as a function of added zinc. The apoCA begins to 

compete effectively for incoming zinc only after Zn3-αMT has formed. No significant 

amount of holo-CA (Zn1-CA) was detected earlier in the titration (Figure 3.1A-C). The 

CA was 50% metallated after approximately 4.2 equivalents of zinc had been added. 
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Figure 3.1: Deconvoluted ESI mass spectral data recorded during the competitive 

zinc titration between equimolar (30 µM) apo-αMT and apoCA at pH 7.0. 

Equivalents of zinc acetate stock (5 mM in diH2O) were added into the mixed protein 

solutions and equilibrated for 3 min prior to measurement. Each of the αMT and CA (a = 

apo-, h = Zn-CA) species are highlighted with dashed lines. The separate mass ranges for 

each protein have been individually normalized to 100% abundance. 
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We have previously described a modeling procedure that simulates these population 

distributions based on the zinc binding affinities within and between competing 

species.30, 31, 38 Here, the affinity constants of the αMT fragment were determined in a 

similar manner, by minimization of the root mean square difference between the 

experimental data (Figure 3.2) and a theoretical data set. This theoretically calculated 

data set was based on the four competitive, sequential, reversible, bimolecular reactions 

that describe the formation of Zn4-αMT from apo-αMT and with the competitive reaction 

that describes the formation of holo-CA from apoCA (Scheme 3.1). In these models, zinc 

distribution is determined by the thermodynamically preferred occupancy based on the 

relative values of the individual binding affinities. 

 

Figure 3.2: Extracted experimental speciation profiles from the competitive zinc 

titration of equimolar mixtures of apo-αMT (A) and apoCA (B) at pH 7.0. The 

fraction of each species has been plotted according to the stoichiometry of the zinc added. 

An equivalent means zinc added for one metal binding site. The lines have been added as 

guides with no theoretical significance. 
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Figure 3.3 shows the population curves calculated for the model of the stepwise 

competitive zinc titration of apo-αMT and apoCA. This is the model that best fit the 

experimental data set shown in Figure 3.2. To facilitate evaluation of the accuracy of the 

model, an overlay of experimental data points and predicted modeled speciation is shown 

in Figure C-1 (Appendix C). These population distributions are based on the four zinc 

affinity constants of αMT (Figure 3.3A) coupled to the single zinc affinity constant of CA 

(Figure 3.3B). The relative magnitudes of the affinities are thus anchored to the known 

value for CA of log10(KF) = 11.4 at pH 7.39 The four αMT zinc affinity constants that best 

fit the experimental data were log10(KF(α, 1-4)): 13.5, 13.2, 12.7, and 12.6. Since the 

affinities are linked, the quality of the fit for each of the four calculated zinc affinities 

depends on all of the other values. Because the model is minimized and all of the 

affinities simultaneously determined in a single step, we are confident in our assessment 

and estimate the error for each value at < ±0.2 log units.  

 

Figure 3.3: Simulation of the competitive zinc metallation of apo-αMT (A) in the 

presence of apoCA (B). This simulation uses log10KF of 13.5, 13.2, 12.7, and 12.6 for 

the αMT affinity constants. These affinity constants were determined by minimization of 

the RMSD between the simulated data and the experimental data and the relative 

affinities anchored to the known zinc affinity constant of CA (11.4).39  
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3.3.2 Competition for Zn2+ between apoCA and apo-βMT. 

Figure 3.4 shows representative deconvoluted ESI mass spectral data measured during 

the stepwise competitive zinc titration of a solution of apo-βMT and apoCA. This figure 

shows the eventual formation of zinc-saturated Zn3-βMT and holo-CA (Figure 3.4F) as a 

function of six of the steps of the zinc titrated into an equimolar solution of apo-βMT and 

apoCA (Figure 3.4A). Here, four equivalents of zinc (three to saturate apo-βMT and one 

for apoCA) are required to complete the titration. Again, as with the α-MT, a small 

amount of the β-MT oxidized due to micromolar amounts of dissolved oxygen.   

The relative population distributions for each of the species present during the zinc 

competition between apo-βMT and apoCA were extracted from the ESI mass spectral 

data and are shown in Figure 3.5, which shows that zinc binds to apo-βMT also non-

cooperatively (Zn1-βMT dominates at one equivalent of added zinc, Zn2-βMT at two 

equivalents, etc.). Figure 3.5B shows that the apoCA competes effectively with Zn2- and 

Zn3-βMT. Therefore, less of the incoming zinc binds proportionally to the βMT 

fragment, and as a result Zn2- and Zn3-βMT metallate later in the titration. The shape of 

the metallation curve for apoCA is neither linear, sigmodal, nor exponential, as a function 

of added zinc. This is significant as the trend in metallation as a function of added Zn2+ is 

dependent on the relative values of the three binding affinities of the competing species 

as a function of the amount of added zinc. The apoCA was 50% metallated at 

approximately 2.5 equivalents of added zinc.  

 

Scheme 3.2: Competitive and sequential metallation reactions of apo-βMT and 

apoCA. 
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Figure 3.4: Deconvoluted ESI mass spectral data recorded during the competitive 

zinc titration between equimolar (30 µM) apo-βMT and apoCA (a-CA) at pH 7.0. 

Equivalents of zinc acetate stock (5 mM in diH2O) were added into the mixed protein 

solutions and equilibrated for 3 min prior to measurement. Each of the βMT and CA (a = 

apo-, h = Zn-CA) species are highlighted with dashed lines. The separate mass ranges for 

each protein have been individually normalized to 100% abundance. 
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Figure 3.5: Extracted experimental speciation profiles for the competitive zinc 

titrations of equimolar mixtures of apo-βMT (A) and apoCA (B) at pH 7.0. The 

fractional presence of each species has been plotted according to the stoichiometry of the 

zinc added. An equivalent means one metal binding site. The lines have been added as 

guides with no theoretical significance. 

We also modeled the competition between the apo-βMT and apoCA for zinc using the 

same procedure as described for apo-αMT with apoCA above. Figure 3.6 shows the 

relative population distributions calculated from the best fitting model of the reaction. 

The model was also based on minimization of the RMSD between the data in Figure 3.4 

and a theoretical dataset created by modeling the three reactions that describe formation 

of Zn3-βMT from apo-βMT competing against apoCA (Scheme 3.2). Here, the βMT zinc 

affinity constants that best reproduced the experimental data were log10KF(β, 1-3)): 12.2, 

11.7, and 11.4 (± 0.2). The values of these three zinc affinities demonstrate why apoCA 

(log10KF = 11.4) competes with Zn2- and, much more effectively, with Zn3-βMT, for the 

added zinc.  
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The experimental data for the apo-βMT vs. apoCA zinc competition (Figure 3.5) were 

more accurately reproduced by the model for the βMT speciation. We have provided an 

overlay of the modeled population curves and the experimental data points for this best fit 

for assessment of the model in the supplementary information (Figure C-2, Appendix C). 

We do note that this model less accurately reproduces the CA population curves. This 

may be due to the simplicity of the model and the nature of the sequential, linked 

reactions. We have also included a fit that weighted the apoCA trend more heavily and 

used a more flexible convergence criterion. The CA metallation data for the alternate 

model were predicted more accurately, but at the cost of worse fitting to the βMT species 

(Figures C-3 and C-4, Appendix C).  

 

Figure 3.6: Simulation of the competitive zinc metallation of apo-βMT (A) in the 

presence of apoCA (B). This simulation uses log10KF of 12.2, 11.7, and 11.4 for the 

βMT affinity constants. These affinity constants were determined by minimization of the 

RMSD between the simulated data and the experimental data with the relative affinities 

anchored to the known zinc affinity constant of CA (11.4).39  
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3.4 Discussion 

3.4.1 Structural properties of MT 

To place the significance of these results into perspective, it is necessary to briefly review 

what is currently known about the structural properties of MTs. In the absence of metals, 

apoMT shows no well-defined structure; it exists as a globular, bundled structure shown 

through molecular dynamics calculations,40 FRET experiments,41 and the fact that apoMT 

runs similarly to Zn-MT on Sephadex.42 With the introduction of metals, this “bundled” 

peptide chain has to undergo significant structural reorganization to facilitate tetrahedral 

metal coordination with the four cysteinyl thiolates.41, 43, 44 Regardless of which thiols 

initially bind to the incoming metal, the fluxtionality of the MT peptide strand, coupled 

with the lability of the coordinated metals, ensures that the most favourable 

thermodynamic product is formed. The complexity of the series of rearrangements that 

takes place as each metal is added can be understood when one considers the sequence 

and the folding required for four cysteinyl thiols to bind tetrahedrally to just a single 

Zn2+. For divalent metals, saturation leads to a further complication with the formation of 

a combination of bridging and terminal cysteines in the two clustered domains. In the 

absence of cooperativity (as shown here in the ESI data) the successive formation 

constants decrease and the separated domains appear late in the titration, after all terminal 

cysteines have been exhausted in the formation of five [Zn(Cys)4]
2- units. The thiolate 

sulfurs have to bridge to support the two additional metals. The formation of the clusters 

results in the protein coalescing into the two-domain structure.45  

The bonding network within the clusters is different for the Zn4-αMT and Zn3-βMT 

fragments. Zn3-βMT uses nice cysteines (three bridging and six terminally) while Zn4-

αMT has 11 cysteines (five bridging and six terminal). The ligand:metal ratios are 3.0 

and 2.75 for βMT and αMT, respectively. There is only limited definitive information 

available on the structures formed for unsaturated or partially metallated species (Zn1-6-

βαMTs). The binding of cadmium to apoMT has been reported to occur in a domain-

specific manner, where the first four equivalents of cadmium added bind exclusively to 

the α domain, cooperatively.46, 47 As zinc and cadmium have long been considered 
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isomorphous in their properties, these data have been widely applied to describe the zinc 

binding characteristics of MTs, even though there are few studies that have used 

specifically zinc. In one such study, zinc binding to the apoMT2 isoform was monitored 

using ESI, which suggested that zinc binding was largely cooperative.48 We propose that 

the difference between those data and the data in this report is due to fundamental 

differences in the experimental design. In the former, the zinc was added to apoMT2 at 

low pH and the pH was adjusted back to pH 7. In the experiments presented in this 

report, the zinc was added directly to the apoMT1 at pH7. There could also be different 

pH dependencies for cooperativity between the isoforms. 

3.4.2 Past research on zinc binding properties of MTs 

The zinc binding properties of MTs have been investigated since MT was first 

discovered,49 though not until more recently have the average zinc binding affinities of 

MT been reported (Table 3.1). Both MT1 and MT2 bind cadmium and zinc with high 

affinities. Proton titrations of the separated zinc saturated domain fragments of MT2 

showed average zinc affinities for the β fragment as log10KF = 11.3 (average apparent).50 

This value is comparable to the average of the three modeled βMT zinc affinities reported 

here (average log10KF = 11.9). Though 0.6 log units seems a large discrepancy, we 

consider the approximate agreement as verification of our methodology, especially 

considering that the data are for different isoforms, have been determined using vastly 

different methodologies, and falls within one order of magnitude of other apparent 

average affinities determined for MTs. Average affinities for the seven zinc binding sites 

have also been reported: log10KF = 12.9 from proton titrations of MT251, 11.5 and 10.8, 

from competition experiments between the chelator 5F-BAPTA and MT2 and MT3, 

respectively.52 MT2 has also been shown to transfer only a single zinc to apo-SDH which 

has a zinc affinity (KD = 6 pM) similar, but slightly less than that of CA (KD = 4 pM).53           

Previous work using the MT2 isoform suggested that the highest affinity binding 

constants (for the first four zinc added) bound zinc with approximately the same high 

affinity, and that the last three were each bound with lower, sequentially decreasing 

affinities, and also suggested one very low affinity with log10(K) of > 8.54 The very low 
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binding affinity was later shown to be an artifact of the apoMT preparation procedure, 

rather than a fundamental property of MTs.55 Our studies on domain-domain competition 

between the individual domains and with the intact MT1A protein revealed that the first 

four zinc bound also with differing affinity, expanding the “ladder” of K’s from four to 

seven, one for each metal bound to apo-βαMT.31, 56 We followed with a report on the 

competitive zinc titration between the full rhMT1A protein and apoCA where we 

determined values for each of those seven independent zinc affinity constants, and 

simultaneously confirmed the lack of any very low zinc binding affinity as had been 

suggested (or else the CA would have outcompeted the very weak site entirely).30 The 

seven affinity constants span a range of zinc affinities that appear to permit MT to both 

homeostatically control the delivery of zinc to apo-enzymes and to lock away zinc in 

thermodynamically inaccessible pools, properties that are dependent on the intracellular 

concentrations of zinc, MTs, and other zinc binding proteins. However, questions 

regarding the domain properties with respect to the both the zinc storage (for the first 

bound, high affinity sites) and zinc donation (for the last, most weakly bound low affinity 

sites), remained. Particularly, it was not clear which section of the peptide exhibited the 

highest or lowest affinities.   

The transfer of zinc from MT to apoCA has been shown to follow a PPI mechanism from 

the bimolecular reactions reported by Petering and coworkers.57, 58 However, there is no 

definitive structural information showing possible exchange location. The dumbbell-

shape of Zn7-βαMT includes two crevices that expose on the surface the α and β 

metalloclusters that could permit metal donation from either domain. Robbins and Stout 

also reported on the solvent accessibility of the sulfurs in the two domains of the crystal 

structure, finding that the four sulfurs bound to one zinc in the β domain had the highest 

solvent accessibility (than all other metals), which may be key to the more efficient 

competitive metal transfer from the β-domain to the apoCA in the PPI.59 

The competition experiment, where two species compete for a common metal exploits 

differences in affinities.60 The zinc occupies the binding site of the most 

thermodynamically preferred coordination mode. These experiments provide the relative 

affinities of the competing species directly with no analysis, as the values are apparent 
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from the observed speciation. We modeled the effects of competitor strength on zinc 

distribution between two competing species in our previous report.30 In this current 

report, we have modeled the zinc affinity constants of the individual domain fragments. 

These models were based on ESI mass spectral data measured during competitive zinc 

titrations between apoCA and metal free MT domain fragments. The modeling of the 

complete competition reaction, with stepwise binding of zinc to both proteins (MT and 

CA), locks the modeled domain zinc affinities to the known value for CA. Our current 

models provide strong evidence that this method of modeling as originally demonstrated 

for the intact βαMT protein is an accurate means of calculating the ladder of binding 

affinities (the seven independent KF’s for zinc binding to βαMT).61-63   

Table 3.1: Comparison of reported average zinc affinity constant data of MTs.  

Isoform Domain Method pH Reported 
avg. 

(log10(KF)) 

Ref. 

MT1 βα 
βα 

NTA Competition 
H2KTMS2 Competition 

7.4 11.33 
11.10 

64 

MT2 β Proton Titration 7.0 11.30 50 
MT2 βα Competition with 

8-hydroxy-quinoline- 
5-sulfonic acid 

7.0 12.85 51 

MT2 βα 
 

Zinc titrations and 
competition with 

FluoZin-3 and RhodZin-3 

7.4 11.56 65 

MT2 βα Competition with PAR 7.4 12.50 66 
MT2 βα H2KTSM2 competition 7.4 11.23 64 

MT1 and 
MT2 

average 

βα 
β 
α 

NTA + H2KTSM2 + 
Proton 

Competition Results  
Averaged 

7.4 11.24 
11.22 
11.25 

64 

MT2 
MT3 

βα 
βα 

5F-BAPTA 
competition 

8.0 11.49 
10.79 

52 

rhMT1A βα 
β 
α 

Competition between 
apoMT strands 

9.2 12.77 
12.45 
12.24 

31 

rhMT1A βα Competition with apoCA 7.0 12.30 30 
rhMT1A β 

α 
β + α 

Competition with apoCA 
 

Sum of fragments 

7.0 11.93 
13.11 
12.88 

This 
work 
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3.4.3 Competition between the apofragments and apoCA 

Figure 3.1 demonstrates that the αMT fragment outcompetes the apoCA for the added 

zinc. Figure 3.1A-C, where apo-αMT, Zn1-αMT and Zn2-αMT dominate, show no 

detectable amount of zinc binding to the apoCA. It is not until after the formation of the 

weaker bound Zn3- and Zn4-αMT species are formed does the CA begin to metallate 

(Figure 3.1D-F). In fact, by the point in the titration where CA is only ~50% metallated, 

the αMT fragment is essentially filled. These results demonstrate experimentally and 

conclusively that the αMT fragment affinity constants are all greater than that of CA. 

The relative concentrations of each of the Znn-MT species can be estimated from the ESI-

MS data, as was first shown by Fenselau.67 We have used similar methodologies in the 

past to study the kinetics of arsenic binding to various MTs.12, 13, 68, 69 We normalize each 

protein only against itself as the intensities of the ESI‐MS peaks have been shown to 

remain approximately the same for different metallation states of the same 

protein/isoform at the same pH.70  There are numerous other examples of thermodynamic 

properties determined from similar ESI-based experiments from other research groups, 

even specifically for MT. The Palumma group determined copper binding affinities of 

various copper binding proteins, including MT with ESI-MS.71, 72 The Russel group used 

peak intensities to determine relative cadmium binding constants of MT2.73 And, finally, 

the Blindauer group74, 75  and Freisinger group76, 77 used ESI-MS data (including peak 

intensities) to characterize metal binding and modifications to MTs.  

Each Znn-αMT (n = 0 - 4) species develops and dominates the MT speciation in turn as a 

function of the amount of added zinc as shown in the extracted speciation profiles in 

Figure 3.2A. The non-cooperative filling of the α domain is demonstrated by the presence 

of the dominating species at each equivalent of zinc added (Zn1-αMT dominates at 1 eq, 

Zn2-αMT at 2 eq, etc.). The αMT fragment saturates when only slightly more than four 

equivalents of zinc are added due to the lack of competition by the apoCA. This is 

reflected in the results for the apoCA metallation in Figure 3.2B where no appreciable 

amount of apoCA metallates until a significant fraction of Zn4-αMT has formed. 



www.manaraa.com

77 

 

The fact that the αMT fragment outcompetes apoCA for zinc binding lies in stark contrast 

with the results of the apo-βMT fragment metallation (Figure 3.4 and Figure 3.5). The 

data for the zinc competition between the apo-βMT fragment and apoCA indicate that the 

βMT zinc affinities span a range over which apoCA can compete efficiently.  

Figure 3.4A-B shows that the first metal binds almost exclusively in the βMT fragment, 

with no significant amount of zinc detected bound to CA. Then, as the βMT fragment 

fills, the CA competes with the lower affinity Zn2- and Zn3-βMT species (Figure 3.4C-E). 

The CA is also saturated before the βMT fragment (Figure 3.4F). This trend becomes 

more apparent when the populations of the species during the titration are plotted (Figure 

3.5). The appearance of Zn2- and Zn3-βMT is shifted to later in the titration due to the CA 

binding zinc between 1-3 equivalents of added zinc.  

The binding of zinc to apoCA during the competition with βMT (Figure 3.5B) occurs 

nonlinearly and mirrors the span of the zinc affinities of the βMT fragment. This is 

because populating the apoCA depends upon the affinity of the species against which it is 

competing. Between 0 and 1 equivalents of zinc added, the apoCA is competing with the 

highest affinity Zn1-βMT, and very little zinc is bound by apoCA. This indicates that Zn1-

βMT has an affinity that is beyond the reach of apoCA. Then between 1.25 and 2.25 

equivalents of zinc added, the apoCA binds a greater fraction of added zinc as it 

competes with the more favorable Zn2-βMT affinity. Finally, from 2.25 to 3.25 eq of zinc 

added, the apoCA metallates sharply, when it is competing mostly against formation of 

the weakest affinity Zn3-βMT.  

3.4.4 Evidence for domain interactions in intact βα-MT that 
modulate zinc affinities 

The values determined for the zinc affinities of the αMT (Figure 3.3) and βMT (Figure 

3.6) fragments are shown in Figure 3.7. The binding affinities decrease linearly as a 

function of binding sites. We have included the calculated data for the intact protein on 

the same axis (pink triangles) previously reported for comparison. The seven binding 

constants of the intact βαMT show that the first two zinc binding affinities are 
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significantly depressed relative to the linear trend. We had interpreted this to indicate the 

tangling of the apo-peptide within the globular bundle and the resulting scrambling of the 

set of cysteine ligands required to form the terminally bound zinc ions. The zinc affinities 

of the fragments do not show this same depression. We suggest that this is due to the 

shorter chain lengths becoming less bundled and the cysteines are thus more easily 

reorganized to form the metal binding sites in the apo-proteins. Therefore, the formation 

of the “binding sites” upon zinc addition requires a lesser degree of structural 

reorganization.  

 

Figure 3.7: Comparison of the calculated zinc affinity constants for zinc binding to 

αMT1A (black) and βMT1A (red).  The symbols show the calculated binding constants 

and the lines show linear fits to each set. The green dashed line shows the linear fit for 

the β fragment affinities shifted by four to illustrate the expected linear trend for 

connected fragments. *Affinity data for the zinc binding to the intact βαMT replotted 

from ref30 (pink triangles). 

The significant result of the binding constant data reported here is that only the first two 

zinc binding affinities are modulated by domain-domain interactions when the two 

fragments are linked together in the intact βαMT. We have shown that the βMT binding 

affinity constants shifted by four sites to simulate linking of the isolated β and the α 

fragments (green squares) overlap the affinity constants of the intact protein. 

Surprisingly, the linear trends between the α domain (solid black line) and the α + shifted 
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β (dashed green line) are practically co-linear. This linearity spans the range of the intact 

βαMT protein.  

The difference between the trend for the sum of the individual α and β fragments (4 + 3 

sites) and the intact βαMT (7 sites) shows that the intact protein chain length (and 

number of cysteines) influences the resulting metal binding properties. Our quantitative 

data show that this change is not as previously discussed, namely due to the linker 

between the two formed clusters for the saturated intact protein. The difference is due to 

the effects of strand unbundling and cysteine scrambling for the first two metals bound 

only. However, fully metallated Zn7-βαMT, which absolutely has the metals separated 

into the two (α-4 sites + β-3 sites) distinct domains, likely donates the weakest bound 

zinc from the β domain. Formation of (Zn4S11)(Zn2S9)-βαMT (α-4 sites + β-2 sites) 

following a zinc donation event, likely leads to reorganization of the cysteine ligands 

where the zinc ions are bound by cysteine ligands across the length of the peptide (αβ-6 

sites, i.e. there are additional rearrangement options for the longer intact MT compared to 

the shorter domain fragments) and not into specific domains, as inferred from the 

stabilization of the intact protein data vs. the separated fragment domains.   

3.5 Conclusions 

In this Chapter, we have shown the precise metallation status of MT1A fragments 

competing with CA for available zinc. The ESI mass spectral data show that apoCA 

competes effectively only with the weakest bound zinc, Zn4-αMT and Zn2-3-βMT. We 

have calculated relative zinc affinity constants for each of the zinc binding events in both 

fragments and locked these affinities to the known affinity of CA. The affinities in both 

domains decrease linearly as a function of the number of remaining zinc binding sites.  

Comparing the affinities of the separated domains with the intact MT1A protein, we 

suggest that in the apo-βαMT significant scrambling of the cysteines of the MT protein 

strand depresses the first two zinc affinities. Using the affinity data of the fragments, we 

propose that the zinc is donated from the N-terminal β cluster in Zn7-βαMT. The 

stabilization of Zn6-βαMT and Zn7-βαMT, relative to the isolated domains, was 
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suggested to be a result of increased plasticity in metal coordination due to the longer 

peptide chain and greater number of cysteine ligands. These data provide support for, and 

new details on, the homeostatic interactions of MT and zinc enzymes in regards to the 

zinc donation and binding properties of MT1A and other MTs in general. 
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Chapter 4  

4 Domain selection in metallothionein 1A: Affinity 
controlled mechanisms of zinc binding and cadmium 
exchange∗ 

4.1 Introduction 

Zinc is intricately involved in a myriad of essential biological processes, including 

enzymatic catalysis, respiration, protein folding, cell signaling, and tissue growth.1-3 

These functions are significantly disrupted in the presence of cadmium from common 

sources of chronic cadmium exposure or more rarely acute cadmium poisoning.4 The 

effect of cadmium toxicity on organisms has been well documented,5 though the details 

of the toxicological action at the molecular level are not fully understood.6, 7 Cellular 

function is maintained only within a relatively narrow range of zinc concentrations8 and 

even low cadmium levels disrupt this.4 The family of metallothionein proteins is 

considered to be largely responsible for maintaining the homeostatic control of zinc 

levels. It has been widely proposed that metallothionein is also involved in the 

detoxification of cadmium.9 Currently, this detoxification mechanism is thought to occur 

in a domain-selective fashion.10  

Metallothioneins (MTs) are a superfamily of cysteine-rich, metal-binding proteins that 

are found in all forms of life.11, 12 MTs bind biologically-relevant metals with relatively 

high binding affinities (KF). In vivo functions of MTs include metal homeostasis and 

detoxification of toxic metals.13, 14 MTs are generally characterized by their relatively 

small size (60-70 amino acids for human MTs), and high cysteine content, with up to 

one-third of the sequence comprised of Cys residues.2 The redox properties of these thiols 

have also implicated MTs in the cellular response to oxidative stress.15, 16 

                                                 
∗
 A version of this Chapter has been published: 

Reproduced with permission from: T.B.J. Pinter, G.W. Irvine, and M.J. Stillman. Biochemistry 54 (2015): 
5006-5016. Copyright 2015 American Chemical Society. 
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There are four known isoforms (and numerous subisoforms) of human metallothionein: 

MT1, MT2, MT3 and MT4. The human MT1 and MT2 isoforms are involved in zinc 

homeostasis and heavy metal detoxification. MT3 and MT4 are expressed in specialized 

cells and tissues: MT3 in neuronal and glial brain cells, and MT4 in squamous epithelial 

cells.17 All human MT isoforms have a high degree of sequence conservation and, for the 

divalent metal-saturated species, a two-domain metal cluster structure in which the 

domains are arranged in a dumbbell-like fashion.18 It is important to note that structures 

have been determined only for the metal-saturated MTs, as the apo and partially 

metallated forms of MT are too fluxional, prohibiting NMR structural analysis and 

preventing crystallization. Significantly, this two-domain cluster structure is formed only 

when MT is nominally saturated with seven divalent metals.19  

 

Figure 4.1: (A) Protein structure, (B) metalloclusters of the β and α domains of zinc-

saturated rh-MT1A. 

The structure of the metal cluster is dependent on both the stoichiometry of added metals 

and the preferred coordination number of the metal(s).20, 21 For zinc- and cadmium-

saturated human MT1A (Figure 4.1) the N-terminal β domain binds three metals using 

nine cysteine thiolates and the C-terminal α domain binds four metals using 11 cysteines; 

all of the metals are tetrahedrally coordinated through a combination of bridging and 
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terminal thiolates (Figure 4.1B).22 Past research has highlighted the significance of the 

metal-saturated, two-domain structure and its relevance to the metal binding and release 

properties. However, recent work by Chen et al.,23 Kreżel et al.,24 and the Stillman 

group25 has demonstrated the importance of intermediates in the metallation pathway 

from the metal-free apoMT to the fully metal-saturated holo-MT.  

The mechanism for detoxification of cadmium by MT is currently reported to occur in a 

domain-specific manner (Figure 4.2, Pathway 2a).26 This detoxification action can arise 

from the binding of Cd2+ by newly synthesized apoMT or via exchange into Zn-saturated 

MT. This mechanism was proposed from analyses of cadmium exchange of Zn-MTs 

studied spectroscopically in which the domain-specific exchange was used to explain the 

results that were thought to be related to equivalents of metals added and the “magic-

numbers” of MT metal binding.21 However, spectroscopic methods used in the past 

provide the average metal loading of the protein. The use of ESI-MS to study cadmium-

zinc replacement in the intact MT protein has been reported previously.27  

 

Figure 4.2: Possible metal exchange pathways for MT. The overall reaction is shown 

in Pathway 1 with the substitution of seven Zn2+ (blue) for seven Cd2+ (green). A domain 

specific model in which the majority of the zinc is substituted in one of the domains first 

as shown in Pathway 2. The random replacement model in which the metal exchange 

shows no significant metal preference between the domains and the metals are scrambled 

between the domains randomly as shown in Pathway 3.   
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Much of the current knowledge regarding domain specificity in MTs is based on results 

obtained from partial digestion of the MT strand (leaving one of the domains intact)28 or 

the cadmium titrations of apoMTs, studied by 113Cd NMR.29-31 Specifically, a pH 

dependence on the chemical shifts (and therefore the cadmium cluster formation) has 

been reported.32 Significantly, these NMR studies report that binding of cadmium to the 

apoMT strand occurs cooperatively, with the first four added cadmium ions binding 

exclusively to the α domain, and that these are bound to the protein with the highest 

affinities.33 Furthermore, it has been suggested that mixed Cd4Zn3-MT forms specifically 

Cd4-α,Zn3-β-MT in a highly domain selective manner.31, 34 Other NMR experiments have 

demonstrated metal exchange,35 which is related to strand fluxionality.36 Finally, the 

Cd5Zn2 X-ray crystal structure, obtained from the addition of cadmium to Zn7MT, 

showed that the two remaining zinc ions were located in the β domain.37  

The binding of metals to MT is largely an affinity-driven process. The distribution of 

metals within the full MT protein, between the two-domains, as well as with competing 

MT strands, is reflected by those affinity constants (Kn,F, where n = 1-7); the higher 

affinity sites will be saturated earlier.38 Previous studies have demonstrated that there are 

multiple binding constants for zinc and cadmium, with an average binding constant 

difference of >103 (KF)
39 and have shown mixed Cd,Zn-MT species form in vitro and in 

vivo.10, 35, 40-42  

A domain specific model (Figure 4.2, 2a) for cadmium displacement of zinc in Zn7-MT 

would imply distorted binding affinity ratios (KF
Cd/KF

Zn) such that the α domain would 

have cadmium to zinc binding constant ratios all significantly higher than the β domain 

binding constant ratios to promote cadmium binding exclusively in the α domain. The 

random replacement model (Figure 4.2, 3a) for this same reaction would involve a 

random ordering of binding affinity ratios or a set of binding affinity ratios close enough 

that the distribution would not dominate the distribution of metal in a specific domain.  

In this Chapter, we report the fragment and domain preferences when zinc and cadmium 

bind to the isolated α and β fragments of MT1A. Detailed competition studies using ESI 

mass spectrometry and CD spectroscopy were used to determine the fractional selectivity 
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of the two fragments (and later domains) on a metal-by-metal basis. The high-resolution 

data allowed analysis of the fractional changes in binding site location selected as the 

metal binding domains formed. Our analysis is the first to show the stepwise preferences 

for both zinc and cadmium at physiologically relevant pH values. The data analysis 

provides detailed insight into the formation of the fully metallated protein and indicates 

that at pH 7.4 there is no significant trend to domain specificity for either zinc or 

cadmium. The ESI mass spectral data provide a quantitative domain selectivity index 

reflective of the KF
Cd/KF

Zn ratios for each of the seven metal exchange reactions.    

4.2 Methods 

4.2.1 Purification of recombinant fragments.  

Preparation of isolated MT domain fragments followed previously reported methods 

(Appendix A).43 The amino acid sequences for the isolated domains used in this study are 

based on the recombinant human MT1A sequence: the 38-residue β-MT domain 

fragment sequence (MGKAAAACSC ATGGSCTCTG SCKCKECKCN SCKKAAAA) 

and the 41-residue α-MT domain fragment sequence (MGKAAAAC CSCCPMSCAK 

CAQGCVCKGA SEKCSCCKKA AAA). Each of the corresponding DNA sequences 

was inserted as an N-terminal S-tag fusion protein into pET29a plasmids and individually 

expressed in Escherichia coli BL21(DE3) with cadmium-supplemented growth medium. 

Each protein was expressed and purified separately as the cadmium-saturated form. All 

purified protein solutions were evacuated and saturated with argon to impede cysteine 

oxidation.  

4.2.2 Preparation of apofragments.  

Cadmium was removed from the purified, isolated MT domains. The protein solutions 

were acidified to pH 2.7 before the released cadmium was separated from the apoproteins 

on GE Sephadex G-25 size exclusion media using formic acid in water (pH 2.7) as the 

eluent. The apoproteins were then concentrated and buffer exchanged with 5 mM 

ammonium formate (pH 7.4) using Millipore Amicon Ultra-4 centrifuge filter units (3 

kDa MWCO). Protein concentrations of the final, pH-adjusted apoβMT and apoαMT 

solutions were determined by cadmium remetallation of small fractions of each protein 
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monitored using UV-visible absorption (Cary 50, Varian Canada): ε250 values of 36,000 

M-1cm-1 and 45,000 M-1cm-1 for Cd3-βMT and Cd4-αMT, respectively.  

4.2.3 Zinc and cadmium titrations.  

Stocks of 5 mM zinc acetate (Fisher Scientific) and 5 mM cadmium acetate (Acros 

Organics) were freshly prepared in deionized water, and the concentrations of zinc and 

cadmium were determined using atomic absorption spectroscopy (AA 240, Varian). 

Caution: Cadmium acetate is a known carcinogen. Special care should be taken with its 

handling and disposal. Equal concentrations of apoβMT and apoαMT were mixed in 

acid-washed vials, and the pH values of the resulting solutions were adjusted for the 

titration. Equivalents of zinc were then added under an argon atmosphere. Following each 

addition, the solution equilibrated on ice for 3-5 min before the acquisition of ESI data. 

Longer equilibration times showed no significant change in the speciation of spectral data 

(data not shown). Once both the fragments were saturated with zinc, cadmium 

equivalents were added following a similar procedure. The room-temperature circular 

dichroism (CD) spectra of the solutions were also measured following each cadmium 

addition. Cadmium was added until the fragments had both exchanged all zinc and were 

cadmium-saturated. The titrations were each repeated in triplicate.  

4.2.4 ESI-MS and CD parameterizations.  

A Bruker Micro-TOF II instrument (Bruker Daltonics, Toronto, ON) operated in positive 

ion mode was used to collect the data. NaI was used as an external calibrant. The 

following settings were used: scan, m/z 500-3000; rolling average, 2; nebulizer, 2 bar; dry 

gas, 80°C at a rate of 8.0 L/min; capillary, 4000 V; end plate offset, -500 V; capillary 

exit, 175 V; skimmer 1, 30.0 V; skimmer 2, 23.5 V; hexapole RF, 800 V. The spectra 

were collected for a minimum of 2 min and deconvoluted using the Maximum Entropy 

algorithm of the Bruker Compass DataAnalysis software package. A Jasco J810 

spectropolarimeter was used to collect CD spectral data. The following scan parameters 

were used: step scan; range, 350−220 nm; data pitch, 1 nm; bandwidth, 0.5 nm; response, 

1 s. Spectra were zeroed at 300 nm, and a three point fast Fourier transform filter was 

applied to smooth the data. 
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Figure 4.3: Representative deconvoluted ESI mass spectral data recorded during 

the competitive zinc titrations at pH 7.4 (A-E) and pH 5.8 (F-J) of equimolar 

mixtures of β-MT and α-MT.  The important species are labeled with dashed lines. 

Asterisks indicate non-specific zinc adducts. 

4.3 Results  

The question we wish to answer concerns the binding location of the incoming metal 

during the isomorphous replacement of zinc by cadmium. To test which fragment the 
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incoming metal occupies, we devised a series of competitive titrations in which the 

isolated α and β fragments of MT1A, used as a general model, could compete for 

incoming metals. Key to these competitive reactions is the fact that the two competing 

species are at equal concentrations. Subsequent metallation results in occupancy that will 

depend solely on the thermodynamically preferred distribution based on the relative 

magnitude of the formation constants. Thus, in all of the following experiments, the α and 

β fragments are always at equal concentrations and the metal occupancy will depend on 

the relative values of the seven formation constants (Kn,F, where n = 1-7) that govern the 

competitive reaction products.  

4.3.1 Competitive zinc titration of MT fragments: ESI-MS Data.  

In the process of initial metallation, the apoMT strand must rearrange the protein 

backbone to accommodate metal binding by the cysteine side chains. The relative 

abundancies in the ESI mass spectral data are representative of the relative concentrations 

of the species in solution, as demonstrated previously for zinc,25 cadmium,42 arsenic,44 

and bismuth45 MTs. Figure 4.3 shows the mass spectral data for the competitive zinc 

titrations of equimolar α and β at pH 7.4 and 5.8 as a function of added zinc. Though we 

have previously reported a similar titration,46 those results were measured at pH 9.2, 

significantly beyond the physiological range. As this report demonstrates, such a large pH 

discrepancy can have effects on the metal binding properties, especially the metal 

distributions of Znn-MT, which differ quite significantly at all of these three pH values 

because of the pH dependence of the metal binding reactions. 

 

Scheme 4.1: Competitive and sequential metallation reactions of apoβMT and 

apoαMT. 

As zinc is added stepwise to the competing domain fragments, we observed the 

sequential addition of zinc to both fragments as shown in Scheme 4.1. Because the 
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binding sites are in direct competition for the zinc ions, the zinc is bound in a sequence 

that correlates with the order of the zinc affinities between the α and β domain fragments. 

For example, at pH 7.4, Figure 4.3 (A-E) shows that the β fragment binds a greater 

fraction of the first equivalent of zinc. In Figure 4.3B, where a total of 1.5 equiv of zinc 

has been added, the β distribution is dominated by Zn1-βMT with some formation of Zn2-

βMT. The α species at the same point in the titration show the apo α form being more 

dominant than Zn1-αMT. These data indicate that, under the conditions of the experiment, 

the first zinc binding event takes place in the β domain. At pH 5.8, (Figure 4.3 F-J) the 

first zinc also binds to the β fragment. However, under these acidic conditions, the α 

fragment shows a higher degree of cooperativity compared to the binding at pH 7.4, and 

the order of subsequent zinc binding events is impacted. Though the α fragment begins to 

fill with zinc later in the titration, it saturates earlier than the β fragment. For example, in 

Figure 4.3I, where 5.4 equiv of zinc has been added, the α speciation is dominated by 

Zn4- αMT, while the β fragment speciation shows significant apo-, Zn1-, and Zn2-βMT 

species. The competitive zinc titration data at pH 9.2 from ref46 shows a degree of non-

cooperativity even higher than that shown here at pH 7.4, though the data sets do look 

similar.   

4.3.2 Competitive zinc titration of MT fragments: Speciation 
profiles.  

To compare the titration data between the two-domains as well as to observe differences 

within the fragments as a function of pH, we extracted the ESI speciation profiles for the 

two fragments as shown in Figure 4.4. This Figure reveals information related to the 

overall binding properties of each of the two fragments. Panel A and B show the 

speciation of the α fragment and β fragment, respectively, as a function of added zinc. 

Zn2-αMT and Zn2-βMT are depressed relative to the other speciation traces. This 

indicates that the binding of the second and third zinc ions in αMT facilitates the next 

binding events. We interpret this to imply that structural reorganization of the peptide 

backbone occurs such that the subsequent metallation to Zn4-αMT is promoted. Figure 

4.4C, which shows the zinc speciation of the α fragment as a function of added zinc at pH 

5.8, highlights how this effect is even more pronounced at lower pH. At pH 5.8, the 
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titration is dominated by the formation of the fully metallated Zn4-αMT; the intermediate 

metallation states are all suppressed and Zn4-αMT appears earlier in the titration. This 

effect is not observed for the β fragment at pH 5.8, Figure 4.4D, indicating that the zinc 

metallation mechanism of the α fragment is more sensitive to acidic conditions.  

 

Figure 4.4: Extracted speciation profiles of recorded during the competitive zinc 

titrations of equimolar mixtures of apoα (A and C) and apoβ (B and D) MT at pH 

7.4 (A and B) and pH 5.8 (C and D). Zinc was added stepwise to the solution of apo-

fragments until both fragments were zinc-saturated. The species have been plotted 

according to the stoichiometry of added zinc. One equivalent means the amount of zinc to 

fill one binding site. Lines have been added as guides linking the data points. 
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4.3.3 Competitive cadmium titrations of zinc-saturated fragments 
at pH 7.4. 

 Representative deconvoluted ESI mass spectral data for the competitive cadmium 

titration of zinc-saturated α-MT and β-MT fragments at pH 7.4 are shown in Figure 4.5. 

This figure, and the corresponding pH 5.8 titration data in Figure 4.7, reveals information 

about the location of cadmium exchange. Similar to how binding of zinc to the apo 

fragments depends on the zinc formation constants of the competitive reactions shown in 

Scheme 4.1, the site of the cadmium replacement depends on the relative magnitudes of 

the formation constants of the incoming cadmium and the outgoing zinc as shown in 

Scheme 4.2. This means that, starting with the first equivalent of added cadmium, the 

first zinc to exchange will depend on which site has the greatest KF
Cd/KF

Zn ratio. The 

Zn6Cd1-MT species that is most thermodynamically preferred will form.  

The ESI mass spectral data in Figure 4.5 show that, for the cadmium exchange at pH 7.4, 

cadmium binds to both domains simultaneously. At all steps in the cadmium titration, the 

speciation of the metals is mixed between the fragments. For example, in Figure 5.5D, 

the expanded deconvoluted data for 4.2 equiv of added cadmium shows mixed metal β 

(Zn3-, Zn2Cd1- ZnCd2- and Cd3-βMT) and mixed metal α (Zn4-, Zn3Cd1-, Zn2Cd2-, 

ZnCd3-, and Cd4-αMT) metallation states. 

 

Scheme 4.2: Competitive and sequential cadmium replacement reactions of Zn4-

αMT and Zn3-βMT. 

The model for the isomorphous replacement of zinc with cadmium (Scheme 4.2) follows 

a similar sequential mechanism as shown in Scheme 4.1. Each of the zinc ions is replaced 

in sequence from zinc-saturated Zn7-MT to cadmium-saturated Cd7-MT in a series of 

seven, sequential, bimolecular reversible reactions. In this model, the populations of the 
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various MT species are dependent on the KF
Cd/KF

Zn ratios for each of the metal exchange 

reactions. 

 

Figure 4.5: Representative ESI mass spectral data recorded during the competitive 

cadmium titration of an equimolar (31 µM) mixture of Zn4-αMT and Zn3-βMT at 

pH 7.4. The important species are labelled with dashed lines. Asterisks indicate non-

specific zinc adducts. Panel D shows expanded spectral data after 4.2 equiv has been 

added. 
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The extracted speciation profiles for the pH 7.4 cadmium competitive exchange shown in 

Figure 4.5 are plotted in Figure 4.6. Panels A and B show the amounts of zinc bound to 

the α and β fragments, respectively, as a function of mole equivalents of added cadmium. 

These top two panels highlight the incremental decrease in zinc loading of the initially 

zinc-saturated fragments between the two-domains (Zn4-MT � Zn3-MT � Zn2-MT � 

Zn1-MT � Zn0-MT) as each zinc is substituted by the tighter binding cadmium ions. 

Panels C and D show the populations of increasing numbers of cadmium-bound species 

also as a function of added cadmium.  

 

Figure 4.6: Extracted speciation profiles recorded during the competitive cadmium 

titrations of an equimolar (31 µM) mixture of α (A and C) and β (B and D) Zn-MTs 

at pH 7.4. The species have been plotted according to the stoichiometry of bound zinc (A 

and B) and cadmium (C and D). Lines have been added as guides linking the data points. 
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Figure 4.7: ESI mass spectral data recorded during the competitive cadmium 

titration of an equimolar (34 µM) mixture of Zn4-αMT and Zn3-βMT at pH 5.8. The 

important species are labelled with dashed lines. Panel D shows expanded spectral data 

after 4.0 equiv of Cd2+ has been added. 
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4.3.4 Competitive cadmium titrations of zinc-saturated fragments 
at pH 5.8.  

Figure 4.7 shows deconvoluted mass spectral data for the zinc-cadmium competitive 

exchange reaction at pH 5.8. As cadmium is added, the zinc is replaced in a sequential 

manner within each fragment. Figure 4.7B shows how the first cadmium exchange 

reaction largely takes place in the β fragment.  

 

Figure 4.8: Extracted speciation profiles recorded during the competitive cadmium 

titrations of an equimolar (34 µM) mixture of Zn- αMT (A and C) and Zn-βMT (B 

and D) at pH 5.8. The species have been plotted according to the stoichiometry of bound 

zinc (A and B) and cadmium (C and D). Lines have been added as guides linking the data 

points. 
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The extracted ESI mass spectral data speciation profiles for the pH 5.8 competitive 

cadmium titration are shown in Figure 4.8. Again, we compare the different experimental 

speciation profiles based on relative populations, the population peak intensity, and 

population peak location to reveal information about the relative site occupancy 

following displacement of zinc with cadmium in the two fragments. 

 

Figure 4.9: CD spectroscopic data measured for the competitive cadmium titration 

starting from an equimolar (31 and 34 µM) mixture of Zn4-αMT and Zn3-βMT at 

(A) pH 7.4 and (B) pH 5.8. The inset boxes show the change in ellipticity at 240, 250, 

and 260 nm as a function of equivalents of Cd2+ added. Red lines indicate solutions 

containing Cd5-αMT based on ESI mass spectral data. 

Circular Dichroism. The CD spectra that were simultaneously measured for each 

cadmium addition during the stepwise cadmium titrations are shown in Figure 4.9. At pH 

7.4 (Figure 4.9A) there is an initial increase in the dichroism at 250 nm as the cadmium 

displaces a single zinc. A red shift to a 260 nm shoulder is indicative of the clustering to 
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nominally cadmium-saturated Cd3- βMT and Cd4-αMT. Finally, the intensity maximum 

shifts back to 250 nm because of the formation of Cd5-αMT at the end of the titration, as 

has been previously described.47 The pH 5.8 data (Figure 4.9B) have similar spectral 

features. The key difference between the spectral profiles is the absence of the strongly 

isodichroic point at 250 nm in the pH 7.4 spectra. This is likely due to the fact that under 

acidic conditions, the formation of Cd4-αMT clusters is preferred, meaning that the α 

fragment exchanges earlier in the titration at lower pH values. 

4.4 Discussion 

4.4.1 Extracting metal binding properties of MT using competitive 
titrations.  

There has been considerable discussion regarding the metal binding constants associated 

with each metal that binds to MT.16, 24, 25, 39, 48-52 Initial reports of binding of zinc to MT 

had suggested that all seven zinc ions were bound with approximately the same binding 

constant.39 This model was refined by Maret and co-workers24 when they determined four 

independent binding constants (where the four highest-affinity sites bound zinc with 

approximately the same KF and the three remaining sites had sequentially decreasing 

affinities) and again by our group when we reported the values of all seven independent 

zinc binding constants, one for each of the zinc binding events.25 As previous results have 

demonstrated, MTs bind zinc and cadmium with high affinities.38 The fluxional nature of 

the apoMT strand, the metal-dependent folding that occurs during metallation, and the 

mobility of the metals between and within the protein all require careful and innovative 

experimental designs to assign independent affinity constants.   

Competitive titrations have previously been used to study the metallation processes of 

MTs.25, 27, 46, 48 In the formation of metal-saturated final products, the MTs pass through 

partially-metallated intermediates. For example, the formation of Zn4-MT follows Zn3-

MT as an intermediate, which requires formation of Zn2-MT, and so on back to apoMT, 

(Scheme 4.1). Similar schemes have been proposed for the zinc,25 cadmium,42 and 

arsenic44 metallation mechanisms for MT.49 Some of the proposed functions of MT are 

accessible only when the protein is not metal-saturated. For example, the homeostatic 



www.manaraa.com

102 

 

control of zinc requires both acquisition and donation of zinc,53 necessitating the presence 

of unsaturated MTs in vivo; studies have shown the presence of these unsaturated MTs in 

vivo.54 Differences in the zinc transfer potentials of the two-domains have also been 

discussed in relation to the importance of the domain structure of the intact MT protein.52  

It is important to note that we are extrapolating information about the intact protein on 

the basis of results from titrations of the separated domains. Previous work has suggested 

that the two isolated domains possess properties that differ from those of the intact 

peptide.52 Determining the metal distribution in the whole protein, however, is 

complicated by the lability of the metals, especially following chromatographic 

separations and/or chemical modifications common in other studies of domain 

specificity. Though the affinity constants of the separated domains are changed upon 

domain separation (because of increased fluxionality and options for domain 

reorganization in the larger intact protein strand), we expect that the properties governing 

metal distribution between the domains remain essentially unchanged, as has been 

demonstrated for metal-saturated MTs.55 Assuming that the metallation reactions follow a 

purely domain-specific mechanism, it is likely that the separated domains would enhance 

this feature because the number of interdomain interactions between the separated 

domains and intact protein is reduced.52 Evidence of interdomain interactions will be 

discussed further in Section 4.4.6. Arsenic binding studies showed that the trend in 

binding was maintained in the isolated domains relative to that of the intact protein.44, 56  

At the MT protein concentrations used in this study, dimerization of the MT species, 

either in solution or in the ESI ionization process, is possible. However, we saw no 

evidence of dimer formation in the resulting ESI mass spectral data. We also note that at 

higher metal concentrations, such as the end of the cadmium titration of mixed Zn-MTs 

(where total [Cd2+] + [Zn2+] ≈ 500 µM), nonspecific metal binding may occur during the 

electrospray process that does not directly correspond to the solution phase metallation 

states. There were some nonspecific adducts formed towards the end of the zinc titration 

experiments, especially at higher pH (Figure 4.3E). Because of the fact that the cadmium 

added replaced the zinc bound stoichiometrically, we are confident that this effect was 

minimal for the conditions of the cadmium experiments. 
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4.4.2 Comparison of pH 7.4 and pH 5.8 data.  

Via substitution of zinc with cadmium in one MT species, the vertical panels in Figure 

4.6 and 4.8 (zinc loss vs cadmium bound) should result in mirror images. Each cadmium 

binding event must correspond to a zinc loss. However, we see interesting speciation 

profiles for these competition reactions because both domain fragments are competing for 

the added cadmium and released zinc. For each metal substitution step, the concentration 

of free zinc in the solution changes, and 7 equiv of free zinc is released by the end of the 

titration. As shown in Scheme 4.2, the increases in free zinc concentration compete with 

cadmium binding, which leads to a redistribution of the zinc and cadmium among the two 

fragments governed by the thermodynamic minimum of the KF
Cd/KF

Zn ratio. 

4.4.3 Seven cadmium for seven zinc. 

One of the most discussed functions of MT is its ability to detoxify heavy metals. This 

occurs in vivo through the replacement of the zinc in Zn-MT with cadmium. In vivo, MTs 

predominantly exist as the zinc-bound form (Znn-MT, where n = 4-7) and not the apo 

form, and the binding of cadmium to MT is a result of the metal exchange. In this study, 

we used Zn-MT1A fragments as the starting point of the cadmium exchange competition, 

which may account for discrepancies between this work and previously published results 

that showed that the cadmium binding was cooperative and α domain-selective for 

experiments that used MT2A.52 Cadmium binds with an affinity (KF) higher than that of 

zinc; zinc binding and cadmium binding have long been considered isomorphous.  

Past work has suggested that this exchange may occur in a domain-specific manner, 

where the first four added cadmiums are primarily localized to the α domain of the full 

MT. This mechanism was largely developed from data obtained through spectroscopic 

techniques such as UV-visible absorption, CD, MCD, NMR, and EPR and on the 

assumption that the MT metallation state was largely homogeneous. Except for NMR 

(whose signal intensity is resolved only for the metal saturated and nonfluxtional clusters 

and at millimolar concentrations), these techniques all provide the average metal load of 

all the concurrent species that exist. However, as shown by numerous ESI-MS studies, 

the metallation speciation of the MT strand is significantly heterogeneous, with a spread 
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of speciation summing to the average metal loads. Our data unambiguously confirm and 

support this distributed heterogeneous binding mode (Figures 4.3, 4.5 and 4.7). 

4.4.4 Modeling site selection mechanisms between the α and β 
domains.  

Three models of metal selectivity between the domains (or, in the case of our competition 

experiments, the domain fragments) are shown in Figure 4.10. These models show the 

expected experimental results for a completely α (Panel A) or β (Panel B) selective 

mechanism, as well as for a mechanism in which there is no selectivity between the 

fragments (Panel C). Figure 4.10 provides the average metal loading (top panels) and 

domain selectivity (bottom panels) of those three models. The relative selectivity is 

defined as the difference in stepwise occupancy between the domains for each incoming 

metal. A value of +1 indicates the incoming metal bound specifically in the α domain, 

and a value of -1 indicates the incoming metal bound specifically in the β domain. A 

value of zero indicates the incoming metal was distributed evenly between both 

randomly, meaning no domain specificity.  

The first model shows the domain occupancy with α selectivity where the first 4 equiv of 

added metal binds to only the α domain (Figure 4.10A). Once the α domain is filled with 

4 equiv, the next 3 equiv fills the β domain. The final equivalent supermetallates the α 

domain to form (Cd/Zn)5-αMT as has been previously described.47 The modeled 

selectivity for the α domain over the β domain is based on the order of the binding 

constants that describe the reactions in the competition experiments (Scheme 4.1 and 

Scheme 4.2, and discussed above). In this model, the four sites with the highest affinities 

are located exclusively in the α domain.  

The second model shows the effect on occupancy with β selectivity; the first 3 equiv of 

added metal binds to only the β domain (Figure 4.10B). Once the β domain is filled, the α 

domain binds the remaining incoming metals. Again, the modeled selectivity for the β 

domain over the α domain is due to the order of the binding constants that would generate 

this β selective model. In this model, the binding constants in the β domain have affinities 

higher than that of the α domain, and the binding is β-directed. 
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Figure 4.10: Models of selectivity in binding of zinc and cadmium to MT. Shown are 

three possible mechanisms for binding of metals to MTs: (A) an α selective model, 

(B) a β selective model, and (C) a model in which there is no specific selectivity. Top 

panels show the approximate speciation for the average metal loading in the α and β 

domains. Bottom panels show the domain selectivity during the course of the titration (+1 

for α domain binding, -1 for β domain binding).    



www.manaraa.com

106 

 

In the final model, there is no specific selectivity between the domains, and it is clear that 

the first 6 equiv of added metal binds equally to both domains (Figure 4.10C). After the 

first 6 equiv has been added, the β domain is filled and the α domain binds the final 

equivalent to complete the titration. Once again, this model is based on the relative 

magnitudes of the binding constants at each point during the metal titrations. For this 

model, the first six binding constants are mixed between the two-domains and neither 

domain shows selectivity. 

4.4.5 Comparison of the experimental data and the models.   

Figure 4.11 shows the stepwise, metal-by-metal, selectivity calculated from the ESI-MS, 

as zinc was added to the mixed α and β fragments at (A) pH 7.4 and (B) 5.8. The dashed 

lines indicate the occupancy per addition if there was 100% selectivity for either the α 

fragment (+1) or the β fragment (-1).  It is clear that, at pH 7.4, the more numerous 

cysteines in the α fragment bias the results such that there is a trend towards the α 

fragment. The conclusion is that there is no specific selectivity that cannot be ascribed to 

the greater numbers of cysteines in the α fragment (11 vs 9). At pH 5.8, however, there is 

evidence of weak α domain selectivity. Again, after the first zinc binds to the β fragment, 

the zinc ions bind to the α fragment until the α cluster is filled and the remaining zinc 

ions fill the β fragment. Our conclusion is that under acidic conditions, there is a weak 

selectivity. The α fragment binds a greater fraction of, but not all of, the added zinc.  

We next turn to data recorded for the stepwise displacement of zinc by cadmium (Figure 

4.12). This reaction has long been studied because of the toxicological implications of 

cadmium exposure, and the initial structural data came from cadmium-containing protein. 

In the experiments analyzed here, we are able to identify the fragment (and later the 

domain) selection that is the precursor to the domain specificity mentioned in the 

literature. The ESI-MS data provide far more detail than other techniques. Figure 4.12 

provides the analysis of the mass spectral data to assess the fragment selection for each 

addition of cadmium. We note that for each cadmium added, a zinc is displaced, 

increasing [Zn]free. At pH 7.4 Figure 4.12A), we see that the two-domains fill with 

cadmium evenly.  
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Figure 4.11: Experimental data for the zinc titrations at (A) pH 7.4 and (B) 5.8. Top 

panels show the calculated average zinc loading by each fragment over the stepwise 

titration shown in Figure 4.3-4.4. Bottom panels show the differential domain selectivity 

of each zinc addition (+1 for α domain binding, -1 for β domain binding). 

The selectivity shows a pattern almost exactly the same as that for zinc. That is, the first 

cadmium displaces a zinc in the β cluster (we now talk about clusters because the two 

fragments are saturated with zinc so they exist as the two clustered species, Zn4Cys11- α -

MT and Zn3Cys9-β-MT). There is, however, little evidence of more than minor selectivity 

for the α domain at pH 7.4. We conclude that, at pH 7.4, there is little domain specificity 

for cadmium displacing zinc. 
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At pH 5.8 (Figure 4.12B), there is clearly an increase in the degree of selection of the α 

domain. The first cadmium still displaces the zinc in the β cluster, but then the α domain 

is preferred. Comparison with the theoretical simulations shows that the preference is 

nowhere near domain specific; rather, there is again a preference for the α domain.  

 

Figure 4.12: Experimental selectivity data for the cadmium titrations at (A) pH 7.4 

and (B) 5.8. Top panels show the calculated average cadmium loading by each fragment 

over the stepwise titration shown in Figure 4.5-4.8. Bottom panels show the differential 

domain selectivity of each cadmium addition (+1 for α domain binding, -1 for β domain 

binding). 
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4.4.6 Potential for interdomain interactions and comparison to 
existing data.  

It is possible that the separated domains possess metal binding properties, including 

domain specificity, different from those in the intact protein, because the chain lengths 

and cysteine content are different. For example, we have previously described a model 

metallation pathway for the intact protein, based on the results of metal titrations to MTs 

at basic pH, where the first five metals added to apoMT bind in a beaded fashion, 

forming (MII)Cys4 beads before clustering, following the addition of two additional 

metals to the two-domain protein.46 By definition, this model meant that the metals bound 

initially in a non-domain specific fashion because, for example, the (MII)4(Cys)16-MT 

species uses 16 of the total 20 cysteines in the binding of the metals, more than occur in 

either domain. Because the domain structure is not formed at this point, we cannot 

determine if the metals bound in the early stages of the titration, (MII)1-3-MTs, occurred in 

either the N-terminal or C-terminal region of the protein first. The data presented in this 

report of the separated domain fragments of MT1A extend the data in support of the 

model [at least for (MII)1-2-MTs], showing that the metals are distributed between the 

fragments at all points in the titration. The results also hint at interactions between the 

domains in the intact MTs that may facilitate metal binding and change the metal binding 

properties. 

These results contrast with those of other studies of domain selectivity,32, 34, 35, 60 from 

most notably NMR experiments of metal titrations of MTs. However, data recently 

reported by Chen et al. showed, using NEM modification of intact MT2 studied by ESI-

MS/MS, that the stable Cd4-MT species had the cadmium bound exclusively to the α 

domain at pH 7.4.57 An even more recent study by the same group suggested that other 

intermediate metallation states had cadmium bound to both domains, and suggested that 

the Cd4-MT was due to metal rearrangements to form a thermodynamically stable 

product.23  

This apparent discrepancy in the determination of the presence of domain selectivity may 

be due to methodological differences in the studies; for example, NEM (and other) 

modifications may influence the cadmium binding and “push” the cadmium toward α 
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domain-selectivity, which could possibly arise from NEM reaction rate differences 

between the domains. Alternatively, connection of the domains in the intact protein may 

permit the reorganization of the bound metals from sites distant on the sequence that is 

more difficult for the separated domains to achieve. MT-MT metal transfers through 

direct protein-protein interactions have been reported for arsenic transfer between MT 

species,58 which is significantly less labile than zinc or cadmium. Finally, the difference 

in the experimental data could simply be due to the different isoforms having different 

binding affinities for cadmium, as it has been suggested that different MTs do show 

different metal selectivity.59 Clearly, a careful and direct comparison between the metal 

binding properties of MT1 and MT2, studied under the same conditions, using the same 

methodology is required.    

4.5 Conclusions 

It is becoming increasingly apparent that the traditional model of the two-domain 

structure of MTs is an insufficient descriptor of the functionality of MT species. It is also 

clear from many other experiments that the metals in MTs are labile and occupy those 

sites with the largest binding constants.  Here, we have investigated the role of the two 

isolated domain fragments of MT1A in zinc acquisition and cadmium exchange using 

competitive metal titrations at two biologically relevant pHs. The data showed subtle 

cadmium bias for the α fragment at lower pH. All species showed mixed metallation 

states at all points in the competitive cadmium exchange titration, for both the α and β 

fragments.  

The experimental data, supported by the models, unambiguously show that, under these 

conditions, neither zinc nor cadmium follows a domain-selective binding mechanism 

between either of the isolated domains. The binding affinity constants clearly span both 

fragments in their magnitude, resulting in a distribution of metals. This distribution is 

driven by the interplay of these binding affinities (KF
Cd/KF

Zn) that are close in magnitude, 

resulting in the non-specific site selection between the fragments.  
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Chapter 5  

5 Kinetics of metal transfer reactions between zinc 
metallothioneins and carbonic anhydrase∗ 

5.1 Introduction 

Mammalian metallothioneins (MT) are small, multiple-metal binding proteins with roles 

in zinc homeostasis, cadmium detoxification, and cellular redox chemistry.1-4 Using the 

20 thiols of the cysteine residues, MTs bind up to seven divalent metals into two peptide-

wrapped metal-thiolate clusters.5 This rather unusual, highly flexible metal coordination 

system permits metal binding with variable coordination geometries and stoichiometries. 

Metals bound can be readily donated in exchange reactions depending on the relative 

metal binding affinities. For example, MTs have a higher affinity for cadmium than for 

zinc. This allows for exchange with and release of zinc from Zn-MTs concomitant with 

cadmium binding and sequestration.6   

Cadmium enters cells adventitiously via essential metal ion transport channels where it 

associates with proteins containing metal-binding residues.7 These associations may 

disrupt the protein structure or displace legitimate metals, rendering the protein non-

functional. MTs scavenge cadmium with an exceptionally high average binding affinity 

[log10(KF) > 1016] and sequester the toxic cadmium into relatively inert binding sites, 

potentially protecting the cell against possible toxicological effects.8 Cellular cadmium 

exposure also upregulates MT gene synthesis, creating new apoMT and restoring metal 

homeostasis.9  

Relatively few details of the mechanisms involved in these metal exchange processes are 

currently available. Scavenging by apoMT for cadmium weakly associated with metal 

binding functionalities on the surfaces of proteins (and other cellular macromolecules), 

occurs rapidly.10 The scavenging ability of Zn-MTs is slightly slower due to the occupied 

                                                 
∗
 A version of this Chapter has been submitted: 

T.B.J. Pinter and M.J. Stillman (2015). 



www.manaraa.com

116 

 

binding sites; however, the high binding affinity difference between zinc and cadmium 

would also result in relatively fast exchange reactions as is the case for free cadmium 

added to Zn-MTs in vitro.11  

A more interesting situation arises when cadmium is bound into a traditional metal 

binding site of a metalloenzyme having, normally, a catalytically active metal in the 

active site. These active sites are usually not solvent-exposed because they are often 

buried within the protein fold, a requirement for the activity and specificity of the 

reaction being catalyzed.12 Thus, these metal sites are much less accessible and are 

sterically hindered towards ligand exchange of the bound metal. This means that removal 

of a toxic metal, such as a cadmium bound to a zinc binding site, would be more difficult. 

Therefore, the reactions between cadmium substituted zinc-dependent enzymes and Zn-

MTs are expected to be slower and would likely require involvement of protein-protein 

interactions (PPIs).  

To provide more details on the metal exchange mechanisms that may occur between MT 

and a zinc-dependent enzyme, as in the function of MTs in vivo, we have in this Chapter, 

investigated the kinetics of metal exchanges between various MTs and Cd- and Zn-

carbonic anhydrase (CA). Three experimental situations have been studied kinetically 

using electrospray ionization mass spectrometry (ESI-MS): (i) determination of the 

kinetics of zinc donation from Zn7-MT to apoCA under MT limiting conditions, such that 

the donating species are Znn-MTs (n < 7); (ii) determination of the kinetics of metal 

exchange between zinc saturated MTs, with no open binding sites, Zn7-MT and Cd-CA; 

and, (iii) determination of the kinetics of metal exchange in the presence of open binding 

sites in the MT between Znn-MT (where n = 3-6) and Cd-CA. 

5.2 Methods 

5.2.1 Purification of recombinant MT1A. 

Recombinant human MT1A was purified following previously published procedures 

(Appendix A).13 The DNA sequence corresponding to the human MT1A amino acid 

sequence, which contains additional tetra-alanine repeats at the termini and domain-linker 

region compared to WT human MT1A: MGKAAAACSC ATGGSCTCTG 
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SCKCKECKCN SCKKAAAACC SCCPMSCAKC AQGCVCKGAS EKCSCCKKAA 

AA, was inserted as an N-terminal S-tag fusion into a pET29a plasmids and transformed 

into BL21(DE3) competent E. coli cells and stored as glycerol stocks at -80°C.  

Briefly, cells were cultured into 4 L batches of cadmium-spiked LB (Miller) broth, MT 

expression was induced when OD600 ≈ 0.5 and cells harvested following ~4 h induction 

period. MT was purified as the cadmium-saturated form using SP anion exchange 

columns. The S-tag was removed with thrombin CleanCleave kits (Sigma) and separated 

from the MT using SP cartridges. The protein was concentrated and stored in aliquots at 

-80°C.  

5.2.2 Preparation of zinc metallothionein. 

All solutions were vacuum-degassed and argon-saturated to impede cysteine oxidation. 

Reducing agents were not added as these affect the kinetics of metal exchange. Samples 

of Cd-MT were thawed under vacuum and acidified to pH 2.5 with formic acid. The 

released cadmium was separated from the apoprotein using Sephadex G-25 (fine) size 

exclusion media (GE Lifesciences) equilibrated and eluted with argon-saturated, formic 

acid in water, pH 2.8. Protein was eluted using a Cary 50 equipped with a flow-cell 

cuvette monitoring the 200-300 nm range. The apoMT was concentrated and buffer 

exchanged to 5 mM ammonium formate, pH 7.4 buffer under argon using 3K MWCO 

Amicon Ultra-4 (Millipore) filter units. A small fraction of the concentrated apoMT was 

remetallated with cadmium and the concentration determined using ε250nm = 89,000 M-

1cm-1.  

Excess zinc acetate was added to the apoMT and allowed to react for 30 mins. The excess 

zinc was separated from the Zn7-MT by centrifugation in 3K MWCO (Amicon Ultra-4 

centrifugal filter unit filters), exchanged with 5 mM ammonium formate, pH 7.4 under 

argon. The final concentration of the Zn7-MT was determined spectrometrically by 

adding excess cadmium to a small fraction of the Zn7-MT, as cadmium displaces zinc 

stoichiometrically. The complete replacement of cadmium for zinc and zinc saturation for 

the Zn-MT was confirmed by ESI-MS.  
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5.2.3 Preparation of apocarbonic anhydrase and cadmium-
carbonic anhydrase. 

10 mg of bovine erythrocyte Zn-CA (Sigma) was dissolved in 4 mL of 5 mM ammonium 

formate, pH 5.5 buffer containing 50 mM pyridine-2,6-dicarboxylic acid zinc chelator. 

This was loaded into a prewashed 10K MWCO and concentrated to 500 µL. 

Approximately 4 mL of fresh PDC containing buffer was added to the concentrated 

protein and again centrifuged. This process was repeated until all of the zinc was 

removed from the CA and no zinc was detected in the filtrate. In general, approximately 

25 mL (6 additions of fresh PDC) were required to remove all of the zinc. The PDC was 

then removed from the protein by adding 5 mM ammonium formate, pH 7.4 buffer to the 

filter unit and spinning out the low molecular weight PDC. This process was repeated 

until no PDC was detected in the filtrate. In total, approximately 50 mL of PDC-free 

buffer were required to remove all of the PDC from the protein. 

Cd-CA was made by adding 3x excess cadmium acetate to the apoCA stock and 

incubating for 1 h at room temperature. The excess cadmium was removed by 

centrifugation in a 10K MWCO filter exchanged with 5 mM ammonium formate, pH 7.4. 

The Cd-CA concentrations were determined by UV spectroscopy using ε280nm = 54,000 

M-1cm-1. The metal content of the Cd-CA was verified by ESI-MS prior to experiments 

and generally showed greater than 95% replacement of zinc for cadmium.    

5.2.4 Reactions between Zn-MT and apoCA or Cd-CA and ESI-
MS parameterization. 

Zn-MT was added to apoCA or Cd-CA in 5 mM ammonium formate, pH 7.0 buffer 

under argon and loaded into a gastight syringe (Hamilton) and the reaction followed by 

ESI-MS. The solution was infused at 10 µL/min for continuous data collection using a 

modified, temperature-controlled syringe pump thermostated to the desired temperature 

(± 0.5°C). ESI mass spectral data were collected on a Bruker Micro-TOF II (Bruker 

Daltonics) operated in the positive ion mode calibrated with NaI as an external calibrant. 

The following settings were used: scan = 500-4000 m/z; rolling average = 2; nebulizer = 

2 Bar; dry gas = 80°C @ 8.0 L/min; capillary = 4000 V; end plate offset = -500 V; 

capillary exit = 175 V; Skimmer 1 = 30.0 V; Skimmer 2 = 23.5 V; Hexapole RF = 800 V. 
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5.2.5 Data treatment and kinetic analyses. 

ESI mass spectra were averaged for a minimum of two minutes to ensure good signal-to-

noise ratios then deconvoluted using the Maximum Entropy algorithm of the Compass 

DataAnalysis software package (Bruker Daltonics). Relative peak intensities were 

extracted from these deconvoluted spectra and plotted as a function of reaction times. 

These data were fit to lines using either linear regression or the ExpDecay2 equation: 

2010 /)(
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/)(
10

txxtxx eAeAyy −−−− ++=  
(1) 

in Origin 7 SR2 (OriginLab, Northhampton, MA) as guides.  

The kinetic data were fit to pseudo-second order reaction mechanisms, assuming that all 

zinc came from the Zn-MT species and all cadmium from the Cd-CA and also that [Cd-

CA] = [Zn-MT] at t = 0. Under these assumptions, the second order rate law for Cd-CA 

reacting with Zn-MT: 

Cd-CA + Zn-MT � Zn-CA + Cd-MT (2), is 
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. Eq 5 was plotted for each 

of the three reactions and used to determine the apparent second order rate constants.  
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5.3 Results 

5.3.1 Kinetics of the reaction between Zn-MT and apoCA under 
MT-limiting conditions 

We devised an experiment where excess apoCA could compete with Zn-MT for its bound 

zinc to evaluate the zinc donation properties of Znn-MT (n < 7). The zinc exchange 

between Zn-MT and apoCA in a 0.75:1.0 ratio (protein:protein) was followed 

continuously via ESI-MS. Figure 5.1 shows the time course for the metallation by Zn-MT 

of apoCA. The charge states of the mass spectral data are shown on the left, and the 

corresponding reconstructed deconvoluted masses on the right. At the start of the 

reaction, the CA was almost completely in the apo form, with no detected Zn-CA in 

either the charge states or the deconvoluted spectra (Figure 5.1A), demonstrating the near 

complete extraction of zinc from Zn-CA by the zinc removal procedure. Figure 5.1B-E 

show an increase in Zn-CA levels as the apoCA is metallated by the Zn-MT. The apoCA 

is only approximately 50% metallated after 12 h of reaction time (Figure 5.1D) and is still 

not complete by 24 h (Figure 5.1E). 

The complimentary data for MT are shown in Figure 5.2. The speciation of the MT is 

complicated by the multiple metallation states that coexist in solution. At the start of the 

experiment, the MT was mostly Zn7-MT with a small amount of Zn6-MT and 

approximately 0.5 equiv (per binding site) of cadmium remaining from the purification 

and metal exchange procedures (Figure 5.2A). As the reaction proceeded, the Zn6-MT 

signal intensified and Zn5-MT appeared after 1.5 h (Figure 5.2B). There was a general 

buildup of signal intensity for Zn4-6-MT over the duration of the experiment, with a 

corresponding decrease in Zn7-MT. Significantly, no Zn3-MT was detected in either the 

charge state or deconvoluted spectra.  
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Figure 5.1: Time dependence of the CA metallation by Zn-MT.  Representative ESI 

mass spectral data measured during the reaction between 15 µM apoCA and 12 µM Zn7-

MT are shown. The +10 and +11 charge states are shown on the left, and the 

corresponding deconvoluted mass on the right. The conditions of the reaction were: 5 

mM ammonium formate, pH 7.0 buffer, 25°C.  
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Figure 5.2: Time dependence of the MT demetallation by apoCA. Representative ESI 

mass spectral data measured during the reaction between 15 µM apoCA and 12 µM Zn7-

MT. The +6 charge state is shown on the left, and the corresponding deconvoluted mass 

on the right. The conditions of the reaction were: 5 mM ammonium formate, pH 7.0 

buffer, 25°C. 
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To compare the changes in speciation as a function of time, the relative peak intensities 

were extracted from the deconvoluted data and plotted as a function of time for the MT 

(Figure 5.3A) and CA (Figure 5.3B) species. The change in MT speciation over time 

shows that there was fast transfer from Zn7-MT, followed by much slower release from 

Zn6- and Zn5-MT. In fact, the Zn6- and Zn5-MT speciation traces reached steady states 

only after 10,000 s. Figure 5.3A shows the extracted individual populations of the four 

key MT species. The overall reaction is Zn7-MT � Zn6-M � Zn5-MT � Zn4-MT, with 

each step donating a zinc to the apoCA. The equilibrium data in Chapter 2, showed that, 

at this metallation point, these three partially demetallated species would coexist (recall 

that the data in Chapter 2 started from apoMT and apoCA whereas the data here start 

with Zn7-MT and apoCA). Figure 5.3A then, shows the change in speciation population 

as each of these partially metallated species equilibrates over time. The complexity in the 

figure arises from the presence of all four MT species in the mass spectral data. 

 

Figure 5.3: Time courses of the demetallation of (A) Zn-MT and the metallation of 

(B) apoCA extracted from the ESI mass spectral data. The lines have been fit to the 

data using the ExpDecay 2 equation as described in Section 5.2.5. 
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Figure 5.3B shows the corresponding time course for the CA speciation. Because there is 

only one zinc bound, the data are significantly less complicated. At the 80,000 s data 

point only 80% of the CA had metallated, despite the fact that there were still significant 

amounts of Zn7-MT and Zn6-MT in solution. 

 

Figure 5.4: Second order kinetic analysis of the zinc metallation of apoCA under 

MT limiting conditions.  The line is based on the speciation trace shown in Figure 5.3 

and [apoCA]t=0 = 15 µM.  The apparent second order rate constant for the reaction under 

these conditions, as determined from a linear regression of the data, is 3.8(5) ± 0.5(8) 

M-1s-1. 

Pseudo-second order kinetic analysis, based on the assumption that all of the zinc that 

was bound by the apoCA was originally bound in Zn-MT, is shown in Figure 5.4. The 

plot shows a strong correlation to the linear fit of the data, especially for the early phase 

of the reaction. The second order rate constant, first order in apoCA and first order in Zn-

MT, determined from the slope was 3.8 ± 0.6 M-1s-1. Linear regression of the data for the 

first 12,500 s of the reaction (analysis not shown) gave a slower second order rate 

constant of 2.5 ± 0.5 M-1s-1.   

5.3.2 Kinetics of the reaction between Zn7-MT and Cd-CA 

Metal exchange between 30 µM Zn7-MT and 30 µM Cd-CA was measured continuously 

using ESI-MS. The peak intensities were extracted from the deconvoluted spectra of the 

data as described in the Section 5.2.5. The speciation time course curves of MT show the 

successive reactions of Zn7-MT with Cd-CA forming Zn6Cd1-MT, which can react with 
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another equivalent of Cd-CA to give Zn5Cd2-MT. The time course for these reactions, 

from the ESI mass spectral data measured over 30,000 s, are shown in Figure 5.5A and B, 

respectively. 

 

Figure 5.5: Time course of the metal exchange between Zn7-MT and Cd-CA. (A) 

MT and (B) CA. Species were extracted from the ESI mass spectral data of the reaction 

between an equimolar (30 µM) mixture of Cd-CA and Zn7-MT. The lines have been fit to 

the data using the ExpDecay 2 equation as described in Section 5.2.5. Conditions: 5 mM 

ammonium formate, pH 7.0, 37°C. 

The only MT species that were detected in the ESI mass spectral data were the metal 

saturated forms [(MII)7-MTs], as mixtures of zinc and cadmium. Initially, the reaction 

began with zinc saturated Zn7-MT, which exchanged one zinc for a cadmium bound in 

Cd-CA to form Cd1Zn6-MT. This species reacted with another Cd-CA to form Cd2Zn5-

MT. No other cadmium containing species were observed in either the charge state or 

deconvoluted mass spectra. The trend in the Zn6Cd1-MT population reflects the 
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equilibrium between Zn7-MT and Zn5Cd2-MT, where the trafficking of the zinc to the CA 

in response to the change due to cadmium binding to the MT results in a near constant 

population for Zn6Cd1-MT.  

The corresponding CA metallation time course is more straightforward which is 

reflective of the simpler one-for-one exchange of cadmium for zinc over the course of the 

reaction, where the zinc from the Zn-MT is exchanging with the cadmium initially bound 

as Cd-CA. Again, only 80% of the Cd-CA exchanged with Zn-MT by 30,000 s despite 

the fact that significant amounts of exchangeable zinc (Zn7-MT) were available. 

 

Figure 5.6: Second order kinetic analysis of the reaction of Cd-CA with Zn7-MT.  

The line is based on the speciation trace shown in Figure 5.5 and [Cd-CA]t=0 = 30 µM.  

The apparent second order rate constant for the reaction under these conditions, as 

determined from the linear regression of the data, is 6.0(0) ± 0.5(8) M-1s-1. 

The integrated, pseudo-second order rate plot of 1/[Cd-CA] vs. t, for the reaction between 

Zn7-MT and Cd-CA and based on assumptions regarding the kinetics of the reaction 

described in detail in the Section 5.2.4 and 5.2.5, shows a good correlation to the linear fit 

of the data (Figure 5.6). We determined the second order rate constant (first order in Cd-

CA and first order in Zn-MT) for the reaction of Cd-CA with Zn-MT at 37°C to be 

approximately 6.0 M-1s-1.  
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5.3.3 Kinetics of the reaction between partially metallated MTs and 
Cd-CA 

We have investigated the effects of unoccupied metal binding sites in the MT on the 

reaction between partially metallated Zn-MT and Cd-CA. 30 µM Cd-CA was reacted 

with 30 µM unsaturated Zn-MT (protein concentrations) at 37°C and the cadmium-zinc 

exchange reaction monitored continuously using ESI-MS. The mass spectral data (not 

shown) indicated that the MT initially existed as a mixture of Zn3-6MT, with Zn4- and 

Zn5- being the most populated MT metallated states. Thus, at the start of the reaction 

there was a mixture of between one and four unoccupied metal binding sites, with an 

average of between two and three unoccupied binding sites per MT protein.  

The time course for the change in the population of all of the MT species extracted from 

the deconvoluted ESI mass spectral data for this reaction is shown in Figure 5.7A. This 

figure shows the change in the relative speciation of all of the detected MT species as a 

function of reaction time and highlights the complexity of these reactions involving 

multiple species. The Zn4-MT species remains approximately constant as a result of the 

net balance of all of the reactions that consume or produce Zn4-MT: Zn5-MT � Zn4-MT 

+ Zn2+; Zn4-MT � Zn3-MT + Zn2+; Zn4-MT + Cd2+ � Zn4Cd1-MT. The change in the 

populations for each of the other MT species shown in Figure 5.7A is also the net sum of 

the set of reactions involving that species.  

Overall, the cadmium content of the MT species increase over the course of the reaction 

and the zinc content decreases. This trend is more easily observed in Figure 5.7B, where 

the ratio of Znn-MT / Cd1Znn-1-MT has been plotted as a function of reaction time in 

order to compare the change in cadmium content per metallation state [i.e. each line 

represents the change in cadmium content for (MII)4-6-MT]. For example, the positive 

slope of the blue line (Zn5Cd1-MT / Zn6-MT) shows that the Zn5Cd1-MT population is 

increasing relative to the population of Zn6-MT.   
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Figure 5.7: Time dependence of the populations of metallothionein species for the 

reaction between partially metallated Zn-MT and Cd-CA. (A) Experimentally 

determined time courses of MT species extracted from the ESI mass spectral data of the 

reaction between an equimolar (30 µM) mixture of Cd-CA and Zn(3-6)-MT. Conditions: 5 

mM ammonium formate, pH 7.0, 37°C. (B) Change in the ratio of CdZn(n-1)-MT / Znn-

MT for the values of n = 4, 5, and 6. The change in cadmium occupancy shown for each 

of the detected species as a function of time. The lines are based on linear fits to the data. 
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The corresponding time course for the CA speciation during the reaction with the 

partially metallated Zn-MT is shown in Figure 5.8. Initially, all of the CA was of the 

cadmium bound form. Notably the apoCA did not extract the zinc from the partially 

metallated Zn-MT presumably because the zinc loading of the MT was only Zn3-6-MT to 

begin with. Thus, the formation of the apoCA, formed from extraction of cadmium by the 

unoccupied MT sites, which have larger cadmium affinity values, occurs at a faster rate 

than does formation of the Zn-CA.  

 

Figure 5.8: Experimentally determined time courses of CA species extracted from 

the ESI mass spectral data of the reaction between an equimolar (30 µM) mixture of 

Cd-CA and Zn(3-6)-MT.  Conditions: 5 mM ammonium formate, pH 7.0, 37°C. The lines 

have been fit to the data using the ExpDecay 2 equation as described in the methods 

sections. 

The disappearance of Cd-CA was plotted as a pseudo-second order reaction (first order 

with respect to CA and to MT) and is shown in Figure 5.9.  The data show strong 

correlation to a linear fit that determined the second order rate constant as approximately 

11.7 M-1s-1, from the slope of the line in Figure 5.9. This rate is approximately twice as 

that determined for the reaction between zinc-saturated MT and Cd-CA at the same 

temperature (Figure 5.6). 
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Figure 5.9: Second order kinetic analysis of the reaction of Cd-CA with partially 

zinc metallated MT. The line is based on the speciation trace shown in Figure 5.8 and 

[Cd-CA]t=0 = 30 µM.  The apparent second order rate constant for the reaction under 

these conditions, as determined from the linear regression of the data, is 11.6(8) ± 0.7(2) 

M-1s-1. 

5.4 Discussion 

5.4.1 Protein-protein interactions between metallothionein and 
other metal binding sites 

Evidence of PPIs between MTs and metalloenzymes comes mostly from reports of the 

zinc donation properties of Zn7-MT to apo-zinc-dependent proteins.14-16 There have been 

two reports of metal substitution between MTs and cadmium-substituted zinc-dependent 

enzymes. In the first report, Zn7-MT was shown to exchange a single zinc for the 

cadmium bound to the zinc finger domain of the Tramtrack transcriptional repressor 

protein.17 The second report investigated the kinetics of the metal exchange between apo 

and Zn7-MT and cadmium-substituted bovine carbonic anhydrase (Cd-CA) where the 

apoMT extracted the cadmium from Cd-CA over 20x faster than the Zn7-MT exchange 

reaction.18 

Most reported studies between Zn-MT and zinc binding proteins use an excess of Zn-MT 

as the zinc source. Therefore, those results are largely descriptive of the reactions 

involving Zn7-MT only, since it is in excess, and not the partially metallated species. 

Previously, our group and others have demonstrated that there are seven different zinc 
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binding affinities of MTs; thus, the metal affinity for an incoming metal depends on the 

metal loading.19, 20 Each of the reactions of Znn-MTs (where n = 0-6) for either zinc 

donation or cadmium exchange is controlled by different reaction parameters. This is 

important because there is evidence of substantial pools of partially metallated MTs in 

vivo, which means that these partially metallated MTs play a key role in MT’s function.21 

5.4.2 Metal binding to carbonic anhydrase 

Zinc and cadmium are bound in CA tetrahedrally by 3 HIS and a labile water molecule. 

Significantly, CA binds zinc and cadmium with similar affinities of approximately 

(log10(KF)) 12.0 and 11.1, respectively at pH 7.0.22 Thus, the ratio of the binding 

constants KF
Cd/KF

Zn is small compared to the same ratio for MT and there is, therefore, 

no significant driving force for metal exchange in CA. This means that CA with an 

existing cadmium or zinc in its binding site is resistant to exchange with free metal in 

solution, as has been demonstrated for many metals where similar exchanges involving 

free metals were shown to take from days to weeks.23, 24  

Free metals added to the apoCA protein bind rapidly. For example, in both zinc and 

cadmium titration experiments of apoCA, metal binding occurs within the time of ESI 

mass spectral data acquisition (< 10 s) following stoichiometric mixing (data not shown). 

However, in vivo, metal concentrations are tightly regulated and the concentrations of 

free metals are far below that which would support free metal association to apoenzymes 

following their transcriptional synthesis. Therefore, other zinc sources and chaperones 

must deliver and insert the zinc into these active sites, as suggested as a function of Zn-

MTs.16 

With the goal of obtaining more details regarding the role of Zn-MTs in reactions with 

metalloenzymes, we have investigated a series of metal exchange reactions between Zn-

MTs and CA. We used CA as a putative zinc-binding protein. The above results describe 

the metallation statuses of both the MT and CA species as a function of time. We have 

shown mass spectral data for only the first set of reactions as a guide to aid in 

interpretation of the speciation plots that follow. 



www.manaraa.com

132 

 

5.4.3 Are the zinc donation kinetics different for partially metallated 
MTs? 

In the latter stages of the metal transfer reaction between Zn-MTs and apoCA, when a 

significant fraction of the apoCA is metallated and there is less apoCA to accept a 

donation, the Zn7-MT � Zn6-MT � Zn5-MT � Zn4-MT reactions occur at 

approximately the same rate such that the rate of formation of Zn4-MT approximately 

matches the rate of loss of Zn7-MT. We interpret this result as due to the redistribution of 

zinc in the MT species, restoring the thermodynamically preferred zinc occupancy based 

on the zinc affinities of the different Znn-MT species following a zinc donation event 

from Zn5-7-MT to apoCA. 

These data match the results from the competitive titration between apoMT and apoCA 

for added zinc under equilibrium conditions.19 The apoCA was shown to compete 

effectively only with Zn5-7-MT, and not with Zn1-4-MT. In another set of experiments, 

where the ratio of apoCA:Zn3Cd4-MT was 7:1, only 1.4 zinc ions were released by the 

MT, though further zinc donation was initiated by incubation in the presence of GSH and 

GSSG.25 

Other experiments, where the Zn7-MT was in excess, meaning that the majority of the 

donated zinc species would be from Zn7-MT � Zn6-MT, usually showed faster zinc 

donation kinetics. For example, in time course experiments between excess Zn7-MT and 

apoCA, also studied by ESI-MS, the apoCA was 50% metallated within 2,400 s 

(conditions: 10 mM ammonium acetate, pH 7.5, unknown temp.).15 This is over 10x 

faster than the reaction shown here where the apoCA is 50% metallated after 25,000 s.   

In conclusion, the zinc donation properties of Zn-MTs are modulated by the binding 

affinity differences between the zinc donor and the zinc acceptor. The thermodynamics 

(and kinetics) favour donation more strongly the greater the binding affinity difference is 

between the donor and acceptor, and the reaction occurs faster as well. We now know 

that the zinc are bound to MT with differing affinities (Chapter 2) and we thus expected 

to see slower zinc donation kinetics for Znn-MTs (n < 7). Comparing these new data to 

those available in the literature, we have shown that Zn5- and Zn6-MTs donate much 
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more slowly than Zn7-MTs. These results support the model of Zn7-MT and Zn6-MT as 

the most probable source of MT zinc donation. 

5.4.4 How readily does zinc saturated MT exchange with Cd-CA? 

Cadmium detoxification is another commonly described in vivo function of Zn-MTs. 

Several studies have shown that cadmium binds to MTs via very fast reaction, often 

within the dead-time of stopped-flow instruments (< 10 ms), using free cadmium as the 

Cd-source.10, 26 These reactions are significantly slowed when the cadmium is bound by 

another chelator, such as another protein.27 The metal exchange reactions are reflective of 

the relative binding affinities for cadmium and zinc between the two binding sites, i.e., 

the difference between the metal preferences of one site vs. another. For example, in the 

case of Cd-CA mixed with Zn-MT, the metal exchange will depend on the magnitude of 

Zn
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Cd

Zn
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MT

CA

CA

K

K

K

K
• . CA binds zinc with a higher affinity than cadmium, and MT binds 

cadmium with a higher affinity than zinc. This ratio is largely positive and a favourable 

exchange is thermodynamically predicted to occur.  

The population time course data for the MT species (Figure 5.5A) show that there is an 

initial rapid Zn7-MT to Cd1Zn6-MT reaction, most likely due to a small excess of 

cadmium that was non-specifically bound to the exterior of the Cd-CA protein. This is 

followed by a slower reaction of Cd1Zn6-MT forming Cd2Zn5-MT. The intermediate 

Cd1Zn6-MT reaches approximately a steady state within the first 2,000 s, after which, 

formation from Zn7-MT matches the rate of the reaction that forms Cd2Zn5-MT. 

The CA (Figure 5.5B) shows a similar change in speciation over the reaction time. The 

initial zinc exchange for the bound cadmium, from primarily Zn7-MT (up to 2,000 s), 

appears to occurs at a faster rate than later in the reaction (where the pool of MT contains 

more cadmium and the Cd-CA would also encounter Cd1Zn6-MT). Interestingly, even up 

to almost 30,000 s, a significant fraction of the Cd-CA remains, despite the fact that there 

are zinc ions available for donation from the MT (Zn7-MT and Cd1Zn6-MT). We interpret 

this to indicate that the reaction is approaching equilibrium, where the average relative 
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affinity constants for zinc and cadmium binding to MT are approaching equality to those 

for CA, with respect to the concentrations of each of the species in solution.    

This second order rate constant determined here of 6.0 M-1s-1 at 37°C is faster than the 

reported value of 2.3 M-1s-1 at the same temperature by Ejnik et. al.18 The approximate 

agreement between these two values, however, verifies that the experimental design and 

data analysis procedures are accurately reflecting the kinetics of these (and similar) 

reactions. We also attempted to measure the kinetics at 25°C, but we observed no metal 

exchange reaction, up to 18 h (~65,000 s). This result also agree with those reported by 

Ejnik et al. where the second order reaction rate constant (0.33 M-1s-1) was almost 7x 

slower at the colder temperature.18    

In conclusion, Zn7-MT is able to efficiently exchange bound zinc for bound cadmium 

from Cd-CA. Because the rate of the reaction between the Zn-MT and Cd-CA occurs 

much more rapidly than is possible for a dissociative-associative metal exchange 

mechanism, these results support the PPI model of metal exchange between MT and 

enzymes. Cadmium and zinc each bind to MT and CA with relatively high affinities and 

therefore small dissociation constants, Kd < 10-11. Thus, only very small concentrations of 

free cadmium or free zinc would be in a solution containing MT and CA, and the rate of 

the exchange, for a dissociative-associative metal exchange mechanism would be 

extremely slow.  

5.4.5 Are the metal exchange kinetics between Cd-CA and Zn(3-5)-
MTs faster or slower compared to those for Zn7-MT? 

The results from the previous set of experiments raise an interesting question: if all of the 

metal binding sites in the MT-CA complex are occupied, how does the metal exchange 

take place? Since there are no obvious metal binding ligands that are free in the MT, and 

the CA active site is prefilled with cadmium, the exchange must somehow take place 

within the MT-CA complex. With open metal binding sites in either the CA or MT, the 

metal exchange may become easier because the lability of the metals allows for the use of 

a transient metal binding site to facilitate the exchange process. 
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The speciation time courses in Figure 5.7 are complicated by the overlap of two 

competing processes: the binding of cadmium, which increases the metal load per MT, is 

competing against the zinc donation to the apoCA, which decreases the metal loading. 

The metal donation properties of partially metallated MTs differs significantly depending 

on the number of zincs bound. Thus, the time courses in Figure 5.7 are each the sum of 

the reactions that bind cadmium and donate zinc. Looking only at the zinc metallation 

species, we see a decrease in the Zn6- and Zn5-MT speciation over the course of the 

reaction and a significant increase in Zn3-MT population.  

The time course data corresponding to the CA species (Figure 5.8) clearly show how, 

under these conditions, the metal exchange between Cd-CA and Znn-MT occurs via a 

two-step mechanism. The first step is the relatively fast extraction of cadmium from the 

Cd-CA into the empty metal binding sites in the partially metallated Zn-MTs. The second 

step is the relative slow release of zinc from the partially metallated Zn-MTs to the now 

available apoCA from the previous step. It is important to note that the rates of these two 

steps will depend on the metal loading status of the MT; more empty metal binding sites 

will extract cadmium faster while MTs with more zinc will donate zinc faster. 

These results support the hypothesis that an open coordination site results in faster 

cadmium extraction from a cadmium-substituted zinc enzyme. The second order rate 

constant obtained here (11.2 M-1s-1) is slower than that reported by Ejnik et. al of 18.2 M-

1s-1 for the reaction between apoMT and CdCA also measured at 37°C.18 Significantly, 

the second order rate constant for the partially metallated MTs (~11 M-1s-1) falls between 

that of zinc saturated MT (~6 M-1s-1) and apoMTs (~18 M-1s-1), which is a reflection of 

the cadmium-extraction abilities of each of the MT species. 

5.4.6 The structure of CA and relevance to PPIs with MT 

The crystal structure of carbonic anhydrase II shows that the 3 His active site sits at the 

bottom of a cavity that is approximately 10 – 20 Å across and 15 – 20 Å deep (Figure 

5.10). This cavity is large enough to allow amino acid side chains from the MT to 

approach the metal binding site, especially for a Cys side chain within a flexible loop.  
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Figure 5.10: X-ray crystal structure of CA and metal binding residues that could 

facilitate metal transfers. Structure of human erythrocyte carbonic anhydrase II 

(1CA2)28 showing (A) the surface and active site and (B) the cartoon representation. The 

residues have been coloured according to charge: red = negatively charged, blue = 

positively charged. The zinc in the active site is shown as a green sphere. 

 

Figure 5.11: Manual docking of the crystal structures of CA and MT. CA (1CA2)28 

and MT (4MT2)29 electrostatic contacts near the active site of the CA are able to align 

with complimentary charged residues of MT. The cavity size outside of the active site 

also permits close approach of the MT protein. 
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In the MT-CA complex, nearby metal binding residues along the metal exchange 

pathway may facilitate the metal exchange process. The structure of CA shows that there 

are two histidine that would be well suited to assist in the zinc delivery or cadmium 

removal as intermediate metal binding residues in the exchange process. His4 sits on the 

rim of the active site funnel and His64 sits approximately halfway down the length of the 

funnel (Figure 5.10B, right of the zinc binding site). Other features of the CA protein that 

would be favourable to PPIs with MT are the presence of multiple surface charges that 

could form electrostatic interactions with the MT as shown in Figure 5.11. 

5.5 Conclusions 

The metal donation properties of metallothioneins have been well studied, yet many 

questions remain. Initially MTs were identified as having solely toxicological action from 

the reports of binding toxic metal ions. More recently, MTs have been suggested to play 

roles in the essential metal ion homeostasis of zinc and copper. The true function of MTs 

in vivo are likely a combination of the toxic metal detoxification and essential metal 

homeostasis, depending on the cellular metallation status (a role in cellular redox 

chemistry has also been suggested).  

In this work, we have investigated the role of partially metallated MTs in zinc donation to 

an apo zinc-dependent enzyme, carbonic anhydrase. We showed that partially metallated 

MTs donate zinc with different propensities as a direct result of the relative binding 

affinities of each Znn-MT species for its bound zinc ions. These results support our 

current model where Zn7- and Zn6-MT are the primary zinc donating species for Zn-MTs. 

We have also shown that partially metallated MTs are able to extract cadmium at rates 

intermediate to apoMT (fastest) and zinc-saturated MT (slowest) as a function of the 

number of open metal binding sites. These results suggest that metal exchange occurs in 

two separate steps where cadmium removal from Cd-CA occurs first, followed by a slow 

binding of zinc from the Zn-MT. Taken together, the results from this work support a 

model for metal transfers between MT and other proteins that is via protein-protein 

interactions which permit the essential metal homeostatic and toxic metal sequestration 

roles of MTs in vivo. 
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Chapter 6  

6 Conclusion∗ 

6.1 The metal binding affinities of MT 

Metallothioneins (MTs) were initially discovered by the repeated purification of 

cadmium-containing fractions of samples from equine kidney cortex.1 For many years the 

main function of MTs was thought to be protection against the actions of toxic metals 

through sequestration of those metals. More recently, MTs have been suggested to play 

key roles in cellular zinc and copper homeostasis and, in addition, it has been suggested 

that they are involved in cellular redox chemistries.2-4 The interaction of metals with MTs 

has therefore been at the forefront of this field of research as these suggested functions 

involve metal binding and release reactions. These reactions are then intricately tied to 

the metal binding affinities of MTs for the metal ions and determining toxic metal 

binding affinities of metallothioneins (MTs) has been a significant research goal since 

this family of metal binding proteins was first discovered.5, 6 

Since MTs bind multiple metals, there are two values that can be assigned to the metal 

binding affinity: (i) the average binding affinity (across all metals bound) and (ii) the per 

metal or per binding site affinity. Historically, metals were thought to bind to MTs with 

approximately the same affinity, where the first metal was bound to the apoMT with 

approximately the same affinity as the last metal in forming the metal-saturated MT.7 

More recent results have shown that metal binding to MTs occurs over a range of 

affinities.8, 9 

Accurately and precisely determining the metal affinities on a per site basis has been 

complicated by the unique properties of the MT protein family such as the ability to bind 

numerous metal ions per protein strand, lack of protein secondary structural elements or 

preformed metal binding sites, high fluxionality, and metal lability within and between 

                                                 
∗
 A version of this Chapter is in preparation: 

T.B.J. Pinter and M.J. Stillman (2015). 
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MTs. The focus of the research carried out for this thesis was to determine accurate metal 

binding affinities per site and understand how these affinities control the homeostatic 

functions of MTs. 

6.2 Metal affinities from competition experiments 

At the outset of this research, it was thought that MTs had four very high affinity sites 

with similar affinities, and 3 weaker affinity sites with significantly decreasing affinities.8 

One of our initial goals was the development of methods to resolve the individual binding 

affinities of all seven sites and assign them real apparent formation constants under 

biologically relevant conditions.  

Using competition experiments between apoMT and apoCA for zinc monitored by ESI-

MS, we showed that each of zinc ions was bound to MT with a distinct affinity. Eight 

zinc binding events were observed as distinct, separate reactions. These experiments 

formed the basis of Chapter 2. Modelling the sequential, competitive, reversible 

bimolecular reactions that describe formation of Zn7-MT from apoMT and Zn-CA from 

apoCA, allowed us to determine the relative zinc binding affinities for each of the eight 

reactions. Optimization of the parameters that describe all eight reactions in one 

simultaneous fitting procedure ensured the data were accurately reflected in the models 

and that the modelled parameters were fundamentally sound for all of the reactions.  

The binding affinities of the MT were directly reflected in the change in metal occupation 

of the CA throughout the titration. The most significant result from Chapter 2 was the 

locking of the relative binding affinity of each of the seven independent MT metallation 

reactions to the known, experimentally determined value for zinc binding to apoCA. 

These apparent binding affinities demonstrate that the MT metal affinities span a range 

that simultaneously permits zinc storage, for the low occupancy, high affinity sites (Zn0-4-

MTs), and also zinc donation to zinc enzymes for the higher occupancy, low affinity sties 

(Zn5-7-MTs). 

We have summarized the overall scheme of binding affinities in a cartoon (Figure 6.1). 

This figure illustrates our current model of the “ladder” of binding affinities for the 
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homeostatic roles of MT. At low concentrations of zinc, the predominant species will be 

low occupancy Zn1-4-MTs, which act as deep zinc sinks. These high affinity sites remove 

zinc from zinc sensors that turn on zinc importation, increasing cellular zinc content. As 

the concentration of zinc increases, the weaker affinity Zn5-7-MTs donate the weakly 

coordinated zinc to zinc enzymes and other zinc binding sties. When the concentration of 

zinc exceeds all available MT binding sites, zinc responsive elements turn on zinc export 

and upregulation of MT. 

 

Figure 6.1: The “ladder” of zinc affinities in MTs. Reproduced with permission of 

ref.10 copyright (2014) American Chemical Society. 

6.3 The location of the strong and weak affinity binding 
sites 

In the work described in Chapter 2 we were unable to determine the location of the 

mostly weakly bound zinc. In that report, we had also suggested that suppression of the 

first two, and largest, zinc binding constants was due to tangling of the apoMT peptide 

backbone (pink triangles, Figure 3.7). We therefore next studied the competitive 

metallation reactions of the domain fragments of the MT with apoCA in order to observe 
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the effect of a reduced chain length on the metal donation properties and those results 

were described in Chapter 3. 

Using the ESI-MS we were able to show the zinc occupancy between all species in 

solution. Modelling the ESI mass spectral data allowed us to accurately determine the 

individual zinc binding constants for each of the three and four zinc ions in the N-

terminal β-domain and C-terminal α domain fragments, respectively. We proposed that 

the strongest zinc binding site was located in the C-terminus of the apoMT and that the 

weakest metal, the one being donated from Zn7-MTs was located in the β-domain, N-

terminal fragment. 

In contrast to the trend in the full two-domain protein, the zinc binding affinities of the 

separated domain fragments, relative to those reported for the connected domains in the 

intact protein did not show the same suppression for the first zinc bound (Figure 3.7, red 

circles and black squares). We suggested that this was due to the fact that the apo 

fragments were too short to significantly tangle.  

From a combination of the results presented in Chapter 2 and 3, it is apparent that the 

increased affinity for the intact βα-MT protein, relative to the sum of the separated β and 

α domains, was due to presence of the 20 cysteines that allow more binding mode 

options. This is important in the homeostatic role of MT with respect to zinc based on the 

model of Zn5-MT ↔ Zn6-MT ↔ Zn7-MT as shown in the model of zinc homeostasis in 

Figure 6.2. 

6.4 Metal selectivity between separated α and β 
domains 

The studies described above assume pure zinc occupancy. However, cadmium is 

commonly  bound to MT, especially in the liver and kidneys.11 With seven (MII) binding 

sites the question arises: Does the cadmium bind to specific regions of the peptide chain? 

In the saturated protein, as noted in Chapter 1, MT exhibits two-domains, and the 

question may be refined to ask: Is there thermodynamic control over the binding sites of 
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cadmium in the presence of zinc for a specific domain? As a result, discussion of domain 

specificity has been a common theme in MT research.  

 

Figure 6.2: The model of homeostatic control of zinc by MT. Reproduced with 

permission of ref.9 copyright (2013) American Chemical Society.  

For domain specificity to be apparent, the competing metal binding affinities in specific 

sites must be significantly different. The metallation simulations in Chapters 1 and 2, 

showed that these differences should be larger than one log unit to generate a mechanism 

where metals distribute selectively to the higher affinity sites, as would be required for 

MT domain specificity. The relative zinc affinity constants reported in Chapter 3 revealed 

that there was some separation in the zinc affinity constants between the separated α and 

β-domain fragments and we questioned whether this separation was sufficiently large 

enough to generate a domain specific metal binding mechanism for either zinc binding to 

apoMTs or cadmium exchange into Zn-MTs as shown in Figure 6.3. In the intact protein, 

there are two models for zinc binding. Either the zinc binds randomly across both 

domains or zinc preferentially binds in the N-terminus region or the C-terminus region. 

The second model could result in domain specificity if subsequent zinc binding formed a 
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clustered domain. A more complicated model involves the binding of cadmium in the 

presence of Zn7-MT. Again, there are two possible models. Either cadmium distributes 

randomly between the sites, or the cadmium selectively binds to one of the (filled) 

clustered domains.  

 

Figure 6.3: Model of cadmium exchange with Zn-MT domain fragments. The 

relative affinity constants of the two-domains controls the metal distributions between the 

two separated fragments and, therefore, within the intact protein.  

The experiments described in Chapter 4 challenged the zinc domain selectivity between 

the apo-βMT and apo-αMT domain fragments followed by the cadmium domain 

selectivity between the zinc saturated Zn3-βMT and Zn4-αMT domain clusters. This 

chapter introduced the concept of competing affinity ratios between two metal binding 

species (e.g. KF
1 / KF

2) that ultimately determine where metals will bind. Modeling of the 

data from the ESI-MS experiments showed that there was no significant domain 

specificity for either cadmium binding to Zn-MTs or zinc binding to apoMTs. We also 

showed that selectivity for the α domain fragment was enhanced at lower pH. These 

results suggest that, while the apparent binding affinities are separated as shown in 

Chapter 3, the ratios between the competing species are not significantly different enough 

to generate the domain-specific mechanism of metal binding. These results 



www.manaraa.com

146 

 

fundamentally challenge our current understanding of zinc binding to apoMTs and 

cadmium exchange with Zn-MTs as these reactions have previously been suggested to 

occur in a completely α domain specific manner. 

6.5 Kinetics of the metal exchange reactions between 
MTs and CA 

The results discussed thus far have mostly been descriptions of the equilibrium reactions 

between apoMTs and apoCA in competition for added metals. Under physiological 

conditions, these proteins will largely be premetallated with either zinc or cadmium 

depending on the relative cellular loading of each of those metals. A frequently cited 

concern regarding cadmium toxicity is its ability to displace zinc ions from metal binding 

sites that require zinc for function, forming non-functional cadmium-substituted zinc 

binding proteins.12  

MTs are considered to be a key component in the cellular defense mechanism against 

cadmium toxicity.13 The high cadmium affinities of MTs leads to tight coordination and 

sequestration of any cadmium the protein encounters, preventing other potentially 

disruptive binding interactions from occurring.14 MTs are also considered to be active in 

the rescue of cadmium-poisoned zinc binding proteins, by extracting the erroneously 

bound cadmium and subsequently donating one of the MT-coordinated zinc. This process 

of cadmium sequestration and zinc donation form the basis of MT function, in vivo. 

In Chapter 5, we described three reactions studied kinetically that challenge the zinc 

donation and cadmium sequestration functions of Zn-MTs. Using kinetic ESI-MS 

experiments, we showed that the kinetics of zinc donation from partially metallated MTs 

was significantly slower than the zinc donation from zinc-saturated MTs (Zn7-MTs). 

These results reinforced our model of zinc donation from Zn-MT to apo-zinc dependent 

enzymes, where the primary zinc donors are the high occupancy, weak affinity Zn7- and 

Zn6-MTs. 

The exchange of cadmium for zinc in Cd-CA using Zn-MTs as the zinc donor was also 

studied kinetically. These results showed that Zn-MTs were able to restore the Cd-CA to 
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the native Zn-CA. The rates of the cadmium extraction were dependent on the number of 

unfilled metal binding sites in MT, where more available binding sites extracted the 

cadmium faster. The rate of zinc donation was dependent on the total zinc loading of the 

MT, where higher zinc loading showed faster zinc donation kinetics. 

The rates of the metal exchange reactions between MT and CA all occurred faster than 

would be possible if a dissociative mechanism was operative. Therefore, these results 

also provide support for the model whereby MT and metalloenzymes exchange metals 

via protein-protein interactions. These interactions are likely formed through favourable 

electrostatic contacts between the surface residues of the MT and CA and stabilized by 

the relative fluxtionality of the MT peptide chain. Metal exchange can then occur via 

translocation across transient metal binding residues, shuttling the metals from one 

binding site to the other along the affinity gradient for the metal in question. 

6.6 Final Word 

This work was carried out using novel applications of competition reactions for the study 

of metal binding affinity constants. A key feature of the experimental methodology was 

the extensive use of semi-quantitative data from electrospray-ionization mass 

spectrometry, supported by modelling of the equilibrium reactions involved. We have 

challenged the conventional understanding of how MT acts in its homeostatic role, 

particularly with respect to the zinc donation to a metalloenzyme. These results have 

fundamental significance in interpreting the homeostatic roles of metallothionein 

proteins. Of the several experiments reported, the one that illustrates the power of the 

techniques reported in this thesis, concern the competitive binding of zinc by ßα-MT and 

CA (Figures 2.2 and 2.3). The remarkable clarity of the distribution of the ten species 

involved in the metallation of the ßα-MT and the CA is only observable by mass 

spectrometry. The fact that the distribution of the species indicates the relative binding 

constants without the need for sophisticated analysis underlines the significance of the 

experimental data which directly reflect the series of linked binding constants.    
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Appendix A: Protein purification details 

Table C-1: Chemical inventory 

 

The recombinant human MT1A genes were engineered in the laboratory of Dr. Peter 

Kille at Cardiff University, Wales. The MT genes were inserted into pET-29a plasmids 

that contain a kanamycin resistance marker, a transcriptase and, a Lac I repressor. 

Kanamycin resistance is used as a means of selection as the cells are grown on and in 

media that contain kanamycin. The transcriptase is required for the biosynthesis and 

amplification of the protein. IPTG binds to the Lac I repressor, resulting in the expression 

of the MT gene. This plasmid results in the addition of a short peptide called an S-tag 

appended onto the N-terminus of the protein, which increases protein stability during the 

purification process. The plasmids containing the S-tagged-MT gene, kanamycin 

resistance marker and Lac I repressor were transformed into E. coli BL21(DE3) cells.  

Scheme C-1 shows the protocol used to synthesize and isolate MT. Transformed cells 

stored at -80oC as glycerol stocks were plated onto agar containing 50 mg/L kanamycin. 

The cells were grown at 37oC overnight. These cells were inoculated into 4 x 1 L liquid 

Chemical Name  Supplier 
Β-Isopropylthioglactoside (IPTG) Fisher 
Kanamycin A, monosulphate (>5% Kanamycin B) Fisher 
Cadmium Sulphate Fisher 
Sodium Chloride ACP 
Formic Acid J. T. Baker 
Ammonium Formate Fisher 
Ammonium Hydroxide Fisher 
Tris (hydroxymethyl) aminomethane Caledon 
Hydrochloric Acid Caledon 
18 MΩ Deionized (dI) water Branstead 
1,4-dithiothreitol (DTT) Chemalog 
L.B. (Luria Bertani). Broth, Miller (0.5% lactose) Fisher 
L.B. (Luria Bertani). Agar, Miller (0.5% lactose) Difco 
Zinc Acetate Dihydrate Fisher 
Cadmium Acetate Dihydrate Acros Organics 
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cultures containing 50 mg/L kanamycin and 50 µM CdSO4. The liquid cultures were 

shaken at 37 oC and the absorbance of the cell culture was monitored at 600 nm until the 

absorbance was in the range of 0.4 to 0.6. MT expression was then induced by addition of 

0.7 mL of 1M IPTG. After 30 min, an additional 150 µL of 1M CdSO4 was added to 

metallate the expressing MT. The cells were harvested 4 h after induction by 

centrifugation at 6,000 rpm for 15 min at 4 °C with an Avanti J-series centrifuge 

(Beckman-Coulter, Canada) and JLA-9.1000 rotor. The supernatant was decanted and the 

cell pellet was resuspended in a solution of argon-saturated 10 mM Tris-HCl pH 7.4. 

 

Scheme C-1: Protein preparation protocol for the synthesis of recombinant human 

metallothionein.  

E. Coli plated at 37 °C in the presence of 
50 µg/mL kanamycin  

Incubation for 8 hrs at 37 °C in 
liquid culture in the presence 
of 50 µg/mL kanamycin and       

25 µM CdSO4  

1. After 3 hrs of incubation, mid-log phase 
induction of protein expression                    
(+ 1 mM IPTG) 

2.  Metallation 0.5 hrs after induction      
(+ 75 µM CdSO4) 

Cells in liquid culture 

Harvest cells 

4. Centrifugation of liquid culture               
(0.25 hrs at 6000 rpm) 
5. Resuspension of cells (10 mM Tris-HCl 
pH 7.4 + 3 mM β-mercaptoethanol) 

Isolated cells 

Lyse cells 

6. Cell disruptor (+ 10 mM Tris-HCl pH 
7.4 wash) 
7. Remove cellular debris by 
centrifugation (1 hr at 13 000 rpm) 

Supernatant  

SP ion-exchange 
purification 

Eluents:  10 mM Tris-HCl pH 7.4, 1 M NaCl 
in 10 mM Tris-HCl pH 7.4 

Protein solution 

G-25 size-exclusion purification 
Eluent:  25 mM Ammonium Formate-HCl 
pH 7.4 
 

Purified recombinant 
protein solution 

Identification and characterization 
by UV-VIS spectroscopy and 
electrospray-ionization mass 
spectrometry. 
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The cell pellet was stored at -80oC, thawed, and lysed using the cell disruptor (Constant 

Systems, UK). Cellular debris was removed by centrifugation at 13,000 rpm for 1 h at 

4oC with an Avanti J-series centrifuge (Beckman-Coulter, Mississauga, ON, Canada) and 

JLA-25.50 rotor.   

A Dionex Ultimate 3000 LC pump (Thermo Scientific, Canada) was used in combination 

with a Hi TrapTM SP SepharoseTM cation exchange cartridge (Amersham Biosciences/GE 

Healthcare, Piscataway, NJ, USA) to purify the MT. The protein was eluted from the 

column using a salt (NaCl) gradient. Eluent content was monitored using UV-visible 

spectroscopy and the eluted fractions containing MT were collected, pooled and 

concentrated using a stirred ultrafiltration cell (Amicon Bioseparations/Millipore) with a 

YM-3 membrane, which has a molecular weight cut-off of 3000 Da. Approximately 3.5 

mL deoxygenated aliquots of the protein solutions were sealed under Ar and stored at 

-20oC. 

G25 gel filtration was used to further purify the MT after the SP ion-exchange. Following 

SP ion-exchange, the protein solution contains large amounts of salt which must be 

removed in order to analyze the protein samples by mass spectroscopy. G25 was also 

used to demetallate the recombinant MT to generate salt-free and metal-free, apoMT. 

Concentrated salty Cd-MT was added to a column containing G25 media and eluted 

using 25 mM ammonium formate at pH 2.7 resulting in apoMT. The elution of the 

protein was monitored by UV-visible spectroscopy and the MT species were verified by 

ESI-MS. 

Cadmium-bound MT was expressed as the fusion protein with a 34 residue S-tag attached 

to the N-terminus of the protein. Recovery of the native MT was achieved through 

cleavage of the S-tag with the enzyme thrombin using Thrombin CleanCleaveTM Kits 

(Sigma). Cleavage of the S-tag followed manufacturer’s instructions. 

Briefly, the protocol for cleaving the S-tag was as follows: the thrombin beads were 

suspended in a 90% (v/v) mixture of 10x cleavage buffer (500 mM Tris-HCl pH 8.0, 100 

mM CaCl2) and protein solution and were constantly agitated overnight at 4 oC under Ar. 

The beads were pelleted using centrifugation and protein was separated from the 
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thrombin beads following the included instructions. The supernatant containing the MT 

was collected, diluted (to reduce salt concentration so the MT would stick to the SP ion 

exchange column) and loaded onto a Hi-trap SP cartridge. The S-tag peptide now cleaved 

from the MT only binds to the Hi-trap SP cation exchange column with a very weak 

affinity, and the S-tag elutes from the column first. Cleaved MT protein fractions were 

then pooled and concentrated using a stirred ultrafiltration cell (Amicon 

Bioseparations/Millipore) with a YM-3 membrane.  3.5 mL aliquots of the protein 

solutions were sealed under Ar and stored at -20oC. 
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Appendices 

Appendix B: Supplementary figures for Chapter 2 

 

Figure A-1: Charge state ESI mass spectral data of the competitive zinc titration 

used to generate the deconvoluted data from Figure 2.1. 
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Figure A-2: Overlaid fits of experimental and modeled data sets of the competitive 

titration shown in Figure 2.2 and 2. 3. The experimental data sets are each shown as 

blue diamonds. The simulation of the best fit modelled Ks shown in Figure 2.4. 
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Appendix C: Supplementary figures for Chapter 3 

 

Figure B-1: Overlaid fits of experimental and modeled data sets of the competitive 

titration of apo-αMT and apoCA shown in Figure 3.1 and 3.2. The experimental data 

sets are shown as blue diamonds. The lines are the simulation of the data based on the 

calculated zinc binding affinities of the αMT fragment in competition with the CA shown 

in Figure 3.3 and Scheme 3.1. 
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Figure B-2: Overlaid fits of experimental and modeled data sets of the competitive 

titration of apo-βMT and apoCA shown in Figure 3.4 and 3.5. The experimental data 

sets are shown as blue diamonds. The lines are the simulation of the data based on the 

calculated zinc binding affinities of the βMT fragment in competition with the CA shown 

in Figure 3.6 and Scheme 3.2. 
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Figure B-3: Alternative modeled simulation of the competitive zinc metallation of 

apo-βMT (A) in the presence of apoCA (B). This simulation uses log10KF of 12.48, 

12.05, and 11.00 for the βMT affinity constants. These affinities were determined by 

minimization of the RMSD between the simulated data and the experimental data with 

the relative affinities anchored to the known affinity of CA (11.4). 
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Figure B-4: Overlaid fits of experimental and the alternatively modeled data sets of 

the competitive titration of apo-βMT and apoCA shown in Figure 3.1 and 3.2. The 

experimental data sets are shown as blue diamonds. The lines are the simulation of the 

data based on the calculated zinc binding affinities of the βMT fragment in competition 

with the CA shown in Figure B-3 and Scheme 3.2. 
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Appendix D: Permissions 

 

Figure D-1: ACS Copyright Permission for Chapter 2. 
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Figure D-2: ACS Copyright permission for Chapter 4. 
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